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The scalability of microalgae growth systems is a primary research topic in anticipation of the commer-
cialization of microalgae-based biofuels. To date, there is little published data on the productivity of mic-
roalgae in growth systems that are scalable to commercially viable footprints. To inform the development
of more detailed assessments of industrial-scale microalgae biofuel processes, this paper presents the
construction and validation of a model of microalgae biomass and lipid accumulation in an outdoor,
industrial-scale photobioreactor. The model incorporates a time-resolved simulation of microalgae
growth and lipid accumulation based on solar irradiation, species specific characteristics, and photobior-
eactor geometry. The model is validated with 9 weeks of growth data from an industrially-scaled outdoor
photobioreactor. Discussion focuses on the sensitivity of the model input parameters, a comparison of
predicted microalgae productivity to the literature, and an analysis of the implications of this more
detailed growth model on microalgae biofuels lifecycle assessment studies.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Microalgae-based biofuels have several sustainability, eco-
nomic, and environmental benefits over more conventional biofu-
els. When compared to first-generation biofuel feedstocks,
microalgae are characterized by higher solar energy yield, year-
round cultivation, the use of lower quality or brackish water, and
the use of less- and lower-quality land. Microalgae feedstock culti-
vation can be coupled with combustion power plants or other CO2

sources to sequester GHG emissions and it has the potential to uti-
lize nutrients from wastewater treatment facilities (Batan et al.,
2010; Schenk et al., 2008; Wijffels and Barbosa, 2010). These
advantages have lead to an increased interest in microalgae as a
second generation feedstock for biofuels.

Analyses that have attempted to model the productivity, eco-
nomics, and lifecycle environmental impacts of the latest genera-
tion of microalgae cultivation systems have relied on scale-up of
laboratory data to model microalgae growth at industrial scale.
Previous modeling efforts have undertaken the specific challenge
of modeling growth and lipid accumulation in nutrient limited al-
gal systems, however validation was done utilizing small-scale lab-
oratory data (Mairet et al., 2011; Packer et al., 2010). The scaling of
laboratory data has been justified due to the immaturity of the
microalgae-to-biofuels process and lack of peer reviewed, pub-
lished, scalable growth data. It is well-understood that these labo-
ll rights reserved.

: +1 970 491 3827.
Bradley).
ratory-scale processes do not accurately represent industrial-scale
facilities (Chisti, 2007; Wijffels and Barbosa, 2010). To fully under-
stand the productivity potential of microalgae-based biofuels,
models must be constructed, and validated to predict the produc-
tivity of the microalgae in a realizable configuration and at indus-
trial scale while incorporating real locational characteristics (James
and Boriah, 2010).

This study presents a literature-based bulk growth model incor-
porating the primary factors that affect microalgae growth and li-
pid accumulation. This article then describes the experimental
methods including the Solix research and development microalgae
growth facility located at Colorado State University, and presents a
direct comparison and validation of the model using actual Nanno-
chloropsis oculata growth data from outdoor Solix Generation 3
photobioreactors. The discussion focuses on a sensitivity analysis
and some potential applications of the model. Specifically, the
model results are applied to illustrate the sensitivity of scalability
calculations and life-cycle assessment (LCA) studies to the in-
creased fidelity available from this model of microalgae growth
and lipid productivity.

2. Methods

2.1. Modeling equations overview

The following sections detail the governing equations and
parameters of the microalgae bulk growth and lipid production
model. The purpose of the model is to accurately represent micro-
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algae growth and lipid accumulation of an outdoor photobioreac-
tor. The primary factors that have been experimentally and theo-
retically shown to effect the productivity of microalgae are: light
intensity, photosynthetic rate, respiration rate, temperature, nutri-
ent availability, and lipid production (Richmond, 2004; Sheehan
et al., 1998). The bulk model presented here takes into account
all of these factors. The model incorporates 7 sub-systems defined
by 16 species-specific modeling parameters. The model requires
inputs of light and reactor temperature, and has outputs of bio-
mass growth and lipid accumulation for the reactor system mod-
eled. The origins and application of the subsystems and species
parameters are detailed.

The bulk model equations and microalgae characteristics are
developed from literature, coded in MatLab�, and validated with
growth data of Nannochloropsis oculata cultivated at Solix in out-
door photobioreactors.

2.1.1. Light distribution modeling
In this model, a primary input is light which is represented as a

volumetric average light intensity calculated based on light inten-
sity at reactor surface. Mixing microalgae cultures has an effect on
growth by increasing the frequency of light to dark cycling of the
cells. In systems that operate at a relative low cell density, in short
optical path reactors, at relatively low sparge rates, mixing dynam-
ics will not dramatically affect the microalgae culture growth rates
(Qiang and Richmond, 1996). This model therefore assumes that
the culture is adapted to the average light intensity (Richmond,
2004). The alternative is to simultaneously model time-resolved
microalgae growth kinetics, fluid dynamics, and light penetration,
but the increase in computational cost and validation effort for this
alternative is currently not justified.At low densities within the
reactor, the intensity of light will fall off exponentially according
to the Lambert–Beer Law (Richmond, 2004):

EðLÞ ¼ E0 � e�a�qXdw �L: ð1Þ

At higher densities scattering can become an important consid-
eration for determining local light intensities (more details in Sup-
plementary material). This model uses an average light intensity
and uses Lambert–Beer for a 1st order approximation to conserva-
tively estimate the amount of light that passes completely through
the reactor, which for the reactor system modeled would only oc-
cur at low cell densities where Lambert–Beer law is applicable. The
average light intensity in the plate reactor modeled can then be
calculated as:

Eav ¼ E0 �
1� e�a�qXdw �B

a � Xdw � B
ð2Þ
2.1.2. Photosynthetic rate modeling
For this model, biomass growth is calculated based on an energy

balance incorporating photosynthetic, respiration, and energy re-
quired for the uptake of nitrogen. Photosynthesis involves a series
of reactions that start with light absorption, involve synthesis of
NADPH and ATP as intermediate energy-conserving compounds,
and lead to carbon fixation in the Calvin cycle. The carbon specific
rate of this reaction (Pc) is dependent on the light intensity, light
absorption, and the efficiency of using photons (see Supplementary
material for more details) (Geider and Osborne, 1991; Williams
et al., 2002):

Pc ¼ Pc calc � 1� exp
�a � /m � Eav

Pc calc

� �� �
ð3Þ

Pc_max is affected by two efficiency factors (see Sections 2.1.5 and
2.1.6 for definitions of uT and (/qN;Xint

):

Pc calc ¼ Pc max � /T � /qN;Xint
: ð4Þ
The final expression (3) balances energy flow with carbon fixa-
tion including, respiration losses, and energy loss requirements for
nitrogen uptake when bioavailable nitrogen is present (more de-
tails on nitrogen effects are presented in Section 2.1.6).
2.1.3. Respiration rate modeling
This model incorporates respiration losses from metabolic costs

of biosynthesis and the costs of cell maintenance. Metabolic costs
such as the reduction of nitrate to ammonium and incorporation
of ammonium into biomass is incorporated as a function of the
specific uptake rate of nitrogen and biosynthetic efficiency which
is not incorporated into the respiration portion of the model (Geid-
er et al., 1998). Researchers in the past have shown that respiration
rates during the night are the same as respiration rates during the
day, indicating that maintenance respiration is neither stimulated
nor inhibited by growth (Geider and Osborne, 1991). For this mod-
el maintenance respiration (rRc) is defined as a constant.

The respiration rates observed in the field are the combination
of bacterial and microalgae respiration. This model assumes that
contamination levels of bacteria are insignificant; however, as de-
scribed below, the respiration of the culture modeled is based on
growth data that would include the effects of respiration from bac-
teria, if present.
2.1.4. Growth rate modeling
The model presented defines the carbon specific growth rate as

a function of the photosynthetic rate, the respiration rate, and spe-
cific uptake rate of nitrogen:

1
cC;X

� dcC;X
dt

¼ l ¼ Pc � rRc � f � rN: ð5Þ

The dry weight (DW) of the biomass in the reactor (cXdw) can be
calculated for each time step based on the assumption that the bio-
mass is 50% carbon. The specific growth rate, l, is calculated at
each time step and is assumed to be constant for the duration of
the time step:

cXdw ¼ 2 � cC;X0 � el�t: ð6Þ
2.1.5. Temperature rate dependence modeling
In this model the temperature dependence of photosynthesis is

described by the effect of temperature on ribulose-biphosphate
carboxylase (Rubisco) activity. When considering a seasonal cycle,
temperature is the environmental factor that consistently accounts
for the largest part of the variance in growth (Geider and Osborne,
1991). This model assumes that temperature only affects the light-
saturated photosynthesis rate, and not the initial slope of the pho-
tosynthesis-irradiance curve (see Supplementary material) (Geider
et al., 1997). It is assumed that the reactor temperature affects the
culture photosynthetic rate and respiration rate equally.

The model presented by Alexandrov and Yamagata (2007) relat-
ing thermodynamic concepts, such as activation energy, to the typ-
ical bell shape of the enzyme activity temperature curve illustrated
in (7) and (8) have been adapted to this model.

/T ¼
2 � ðTÞ

ð1þ f 2ðTÞÞ ð7Þ
FðTÞ ¼ e
Ea

R�Topt
� Ea

R�T ð8Þ

The efficiency factor for temperature (uT), is a dimensionless
number between 0 and 1. At the optimum growth temperature
uT = 1, and for temperatures higher or lower than the optimum
temperature, 0 < uT < 1 according to (7).
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2.1.6. Nitrogen dependence modeling
For the model presented, it is assumed that microalgae growth

is limited by nitrogen availability and not by phosphorus availabil-
ity. The model presented incorporates nitrogen dependence mod-
eling to accurately capture the growth and lipid production. The
components of the cellular photosynthetic apparatus account for
a large fraction of the total nitrogen in microalgae. Therefore, mic-
roalgae respond to a reduction in nitrogen availability by reducing
the size of the photosynthetic apparatus. A linear dependence of
maximum photosynthesis rates on nutrient-limited growth has
been observed. Correlated with this reduction in maximum photo-
synthesis rate is a decrease in the proportion of cell nitrogen,
which is associated with a decrease in Rubisco. In general, the
light-limited photosynthesis rates are less affected by nutrient lim-
itation than the light-saturated rates (Geider and Osborne, 1991).
Geider et al. (1997) assumed in their model that nutrient-limita-
tion affects growth rate only by imposing a limit on the light-sat-
urated photosynthesis rate. Nutrient limitation will be modeled
by multiplying maximum photosynthesis rate with an efficiency
factor for nutrient-limitation (/qN;Xint

) according to the Droop mod-
el (4).The Droop model assumes that microalgal growth rate is
dependent on intra-cellular nitrogen concentration (Lemesle and
Mailleret, 2008):

l ¼ lmax � 1� qN;Xmin

qN;X

� �
ð9Þ

The cell quota (qN,X) is defined as the mass of internal nitrogen
per total mass of biomass. This quota can be experimentally mea-
sured and is time varying. The minimum cell quota (qN,Xmin) is the
internal nitrogen level where cells cease to grow. The dimension-
less efficiency factor for intercellular nitrogen will therefore be de-
scribed by:

/qN;Xint
¼ 1� qN;Xmin

qN;X
: ð10Þ

The efficiency factor for the specific uptake rate of nitrogen con-
sidering external nitrogen concentration is treated as a Michaelis–
Menten function (Geider et al., 1998; Legovic and Cruzado, 1997):

/qNext
¼ cNmedium

cNmedium þ KN
ð11Þ

When the extracellular concentration of nitrogen is low or the inter-
cellular concentration of nitrogen is high, specific uptake rate is low.

When nitrogen is present in the medium in the form of nitrate,
uptake is an energy-linked process and happens mostly during
daylight (Richmond, 2004). The maximum specific uptake rate of
nitrogen is a function of maximum photosynthetic rate. The calcu-
lated specific uptake rate of nitrogen (rNcalc) is calculated by mul-
tiplying the maximum specific uptake rate of nitrogen with three
efficiency factors: intracellular concentration of nitrogen efficiency
(10), extracellular concentration of nitrogen efficiency (11), and
temperature efficiency (7) (Geider et al., 1998):

rNcalc ¼ rNmax � /qN;Xint
� /qNext

� /T ð12Þ

The specific uptake rate of nitrogen can now be defined by (13).
Integration of (13) yields the total nitrogen in the biomass, (14).

1
qN;X

� dqN;X
dt

¼ rN ¼ rNcalc

qN;X
� rRN ð13Þ
qN;X ¼ qN;X0 � erN�t ð14Þ

The total remaining nitrogen in the growth media can now be cal-
culated through mass balance.
2.1.7. Lipid accumulation modeling
The model incorporates a lipid accumulation model that has

been developed to predict the lipid production of the microalgae
based on a mass balance due to the effects of nitrogen. Once nitro-
gen is depleted, microalgae metabolism switches from protein syn-
thesis to lipid or carbohydrate synthesis causing a change in the
biomass composition (Richmond, 2004). For this model it is as-
sumed that the microalgae metabolism is primarily protein syn-
thesis to lipid and the protein molar percentage, the
carbohydrate molar percentage, and the lipid molar percentage
in the biomass stays constant:

Biomass ¼ Lipidþ CHOþ PRO ð15Þ

Suen et al. (1987) reported lipid concentrations of 55% under
nitrogen limited growth of Nannochloropsis sp. Hu and Gao
(2006) found that lipid content upon nitrogen depletion increased
from 9% to 62% of dry weight, while protein content decreased
from 59% to 23% of dry weight in Nannochloropsis sp. grown under
low nitrogen concentration with carbohydrate content only in-
creased by 10% upon nitrogen depletion. These results suggest that
in Nannochloropsis sp. metabolism almost entirely shifts from pro-
tein synthesis to lipid synthesis.

It should be noted that other environmental factors, like salinity
and temperature, can also have an influence on lipid production
(Richmond, 2004). Although (13) represents a 1st order relation-
ship between lipid content and nitrogen content, validation data
(presented in Section 3.3) illustrates its effectiveness.

2.2. Model parameters summary

The following section presents an overview of the inputs to the
model with the specific assumptions explained. The model is based
off of the cultivation of Nannochloropsis oculata grown in an out-
door Solix photobioreactor. Model inputs and parameters are sum-
marized in Table 1 with ideal model outputs shown in Fig. 1.

2.2.1. Light saturation level
Researchers have shown that the light saturation of green mic-

roalgae typically occurs at 10% of full sunlight. Fabregas et al.
(2004) grew Nannochloropsis sp. under diverse light intensities in
a 12 h light, 12 h dark cycle determining a light saturation level
of 220 lmol m�2 s�1. Gentile and Blanch (2001) determined a light
saturation of 180 lmol m�2 s�1 for Nannochloropsis gaditana. Low-
er values of the light saturation (74 lmol m�2 s�1) have been re-
ported, however those cultures where cultivated under constant
light conditions (Fang et al., 2004). Considering the mixing level,
density operated, diurnal light characteristics, along with the most
relevant experimental data, a light saturation of 200 lmol m�2 s�1

is assumed. It is important to note that the nutrient levels can af-
fect the light saturation value because nutrient depletion reduces
the chlorophyll content of the microalgae. This effect is accounted
for in this model through the efficiency factors associated with
nitrogen uptake (Flynn et al., 1993).

2.2.2. Absorption coefficient
The absorption coefficient was determined experimentally for

Nannochloropsis, 0.0752 m2 g�1 (Gentile and Blanch, 2001). The
absorption coefficient of microalgae will vary over the course of
a batch; however the variance is not significant in this application.

2.2.3. Maximum growth rate
The maximum cell-specific growth rate represents the highest

growth rate attainable in the exponential growth phase. The max-
imum cell-specific growth rate under nutrient rich conditions for
this modeling effort is 2.5 � 10�2 h�1 (Flynn et al., 1993; Gentile
and Blanch, 2001).



Table 1
Summary of model parameters.

Parameter Abbreviation Value Unit

Light saturation level Ek 200 lmol m�2 s�1

Absorption coefficient a 0.0752 m2 g�1

Maximum growth rate lmax 2.5 � 10�2 h�1

Maintenance reparation rate rRc 4.32 � 10�4 h�1

Biosynthetic efficiency f 4 g g�1

Optimum Temperature Topt 23 �C
Activation energy Ea 63 kJ mol�1

Maximum cell quota of nitrogen qN,Xmax 0.150 g g�1

Minimum cell quota of nitrogen qN,Xmin 0.010 g g�1

Cell quota of nitrogen of inocula qN,X0 0.060 g g�1

Half saturation constant for nitrogen uptake KN 0.005 g L�1

Maximum specific uptake rate of nitrogen rNmax 1.5 � 10�6 g g�1 h�1

Maximum photosynthetic rate Pc_max 3.6 � 10�2 h�1

Photon efficiency um 6.5 � 10�7 g (lmol photons)�1

Nitrogen respiration rate rRN 0 h�1

Fig. 1. Solid blue line represents results from summer-time simulation and dashed black line represents winter-time simulation. All simulations assumed ideal basin
temperatures and clear sky ideal light conditions based on a geographical location of Fort Collins, Colorado using the Rest2 solar model. Top Left: Model prediction of overall
culture density with harvesting at 3 g L�1 over a 30 day period. Top Right: Model results for bioavailable nitrogen in media over a 5 day growth period. Bottom Left: Model
results for lipid accumulation over a 5 day growth period. Bottom Right: Model results for growth rate for a 5 day growth period (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.).
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2.2.4. Maintenance respiration rate
A linear relationship between the maximum photosynthetic

rate and the maximum growth rate has been observed (Geider
and Osborne, 1991). This observation coupled with (4) shows that
the respiration rate and the maintenance respiration rate can be
defined as a percentage of the maximum photosynthetic rate. For
this model, a respiration rate of 2% is selected to match experimen-
tal data.
2.2.5. Biosynthetic efficiency
Energy is required for the reduction of nitrate to ammonium,

incorporation of ammonium into amino acids, and polymerization
of amino acids into proteins. This energy is accounted for through
biosynthesis efficiency, f, set at 4 g biomass per g nitrogen assim-
ilated (Geider et al., 1998). Details on the maximum and minimum
nitrogen to carbon ratios are presented in Sections 2.2.8 and 2.2.9.

2.2.6. Optimum temperature
A literature review indicates the optimum temperature of Nan-

nochloropsis oculata is between 21 and 24 �C (Spolaore et al., 2006).
For this modeling effort an optimum temperature of 23 �C is
selected.

2.2.7. Activation energy
The activation energy for this model is based on the energy re-

quired for activity of the Rubisco enzyme. Light-saturated photo-
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synthesis and the carboxylase activity of Rubisco are characterized
by activation energy of 54–72 kJ mol�1 (Geider and Osborne,
1991). A value of 63 kJ mol�1 has been selected for this model.

2.2.8. Maximum cell quota of nitrogen
The maximum cell quota of nitrogen is the maximum amount of

nitrogen that can be contained in the cell. Analysis of the biomass
produced in the Solix photobioreactor yields a maximum cell quota
of 0.15 g nitrogen per g biomass and selected for this modeling ef-
fort. For comparison, Hu and Gao (2003) determined that the pro-
tein content of Nannochloropsis sp. ranges between 34% and 41%.
This converts to a maximum cell quota of 0.07–0.09 g nitrogen
per g biomass. Flynn et al. (1993) found a lower maximum cell
quota of 0.2 g nitrogen per g biomass.

2.2.9. Minimum cell quota of nitrogen
Flynn et al. (1993) found a maximum carbon–nitrogen ratio of

28, corresponding to a cell quota of 0.036 g nitrogen per g biomass.
Ambrose (2006) uses a smaller number, 0.0072 g nitrogen per g
biomass, therefore, for this study the minimum cell quota is as-
sumed to be between the two literature values, 0.010 g nitrogen
per g biomass.

2.2.10. Cell quota of nitrogen in inocula
Inocula are obtained from a sample of a mature, harvested cul-

ture. An analysis of the biomass composition of harvested microal-
gae showed a protein content of 29%. Using a nitrogen-to-protein
conversion factor of 4.78, the nitrogen content for inocula is set
at 0.060 g nitrogen per g biomass (see Supplementary material).

2.2.11. Half saturation constant for nitrogen uptake
The half saturation constant for nitrogen uptake determines the

rate at which the specific uptake rate of nitrogen declines when
nitrogen concentration in the medium decreases. A value of
0.005 g L�1 will be assumed for this model (Ambrose, 2006).

2.2.12. Maximum specific uptake rate of nitrogen
The maximum specific uptake rate of nitrogen is a function of

the maximum photosynthetic rate with units of g nitrogen per g
biomass per hour:

rNmax ¼ Pc max � qN;Xmax ð16Þ

From (16) the maximum specific uptake rate of nitrogen is
1.5 � 10�6 g g�1 h�1.

2.2.13. Maximum photosynthetic rate
The maximum specific carbon photosynthetic rate is linked to

the maximum growth rate and can be calculated by combining
(5), (12), and (16):

Pc max ¼
lmax þ Rc

1� f � qN;Xmax
ð17Þ

Based on these relations, Pc_max is calculated as 3.6 � 10�2 h�1.

2.2.14. Photon efficiency
The photon efficiency in this model is a set value, because the

maximum photosynthetic rate, the absorption coefficient, and
the saturation parameter are set and the following identity is as-
sumed valid:

Ek ¼
Pc max

a � /m
ð18Þ

The bulk growth model, as illustrated by (18), assumes a mini-
mum quantum requirement of approximately 46 photons, equal to
a photon efficiency of 0.0217 or 6.5 � 10�7 g CH2O (lmol pho-
tons)�1. According to the Z-scheme of photosynthesis, Ek is 0.125
(8 mol of photons needed for production of one mole of CH2O), rep-
resenting an idealized number of photons, which is not attainable
in non-idealized systems. To model realistic systems, there are
other metabolic processes that must be considered, including pho-
torespiration and losses (Geider and Osborne, 1991). These two ef-
fects significantly lower the photon efficiency below its theoretical
limit. Energy required for nitrogen absorption is incorporated into
the biosynthetic efficiency term not the photo efficiency term.

2.3. Experimental materials and methods

The model presented above was validated using weather and
outdoor growth data from the Solix research and development
facility located at Colorado State University. The following section
details the cultivation system, operation, and monitoring for data
collected and used in model validation.

2.3.1. Organism, culture media, and inoculation
The culture Nannochloropsis oculata obtained from the Provasol-

i-Guillard National Center for Culture of Marine Phytoplankton was
cultivated in batch mode starting at 1 g L�1 in modified f/2–
20 g L�1 media (0.425 g L�1 sodium nitrate, 0.005 g L�1 potassium
phosphate, 1 mL L�1 Guillard trace metals). The microalgae was
initially cultivated in flasks under 24 h low light (200 lmole
m�2 s�1) until enough mass was obtained to populate the large
outdoor photobioreactors. All media are prepare and pushed
through a 0.2 lm absolute filter into a tank with the required inoc-
ula where it is mixed to ensure homogeneity prior to inoculation.

2.3.2. Outdoor culture system
The reactor system modelled for this effort is based on the Solix

Generation 3 photobioreactor. The thickness of an individual reac-
tor is 0.05 m with reactors spaced at approximately 0.15 m. The
growth system comprises 16 reactors constructed out of
0.12 mm polyethylene and structurally supported in a thermal ba-
sin (see Supplementary material). Mixing is provided through
sparge air that is operated continuously at 2.5 L min�1 of sparge
per liter of culture (VVM). CO2 is supplied into the sparge air and
delivered to the system with a duty cycle determined by pH feed-
back control (pH maintained at 7.3 ± 0.1). The reactors are oper-
ated in repeated batch mode, growing from the inoculation
density of 1 g L�1 to a harvest density of 3 g L�1. Part of the mature
culture is harvested and then fresh filtered nutrient media are
added such that the reactors are re-inoculated at 1 g L�1.

The temperature of the culture is maintained by the thermal
mass of water basin which also supplies the structural support
for the reactors. The temperature was continuously monitored
and maintained between 19 and 26 �C via a Marley evaporative
cooling system with a capacity at the location of 270,000 BTU or
Jandy Lite2 pool heater with a capacity of 325,000 BTU.

2.3.3. Growth monitoring
Two independent techniques where used for monitoring the

growth of the culture. Optical density was monitored continuously
using an Optech model ASD19-N absorption probe connected to a
Fermenter Control Hardware A1. Datum were logged on a minute
time scale and converted to dry mass using a calibration factor.
The sensor was monitored for biofouling and periodically cleaned.

Manual samples of the culture were taken daily to monitor
growth, nutrient content, and salinity. Samples were drawn using
a 10 mL syringe through sample lines attached to sample ports at
the head of the reactors. Previous sampling experimentation
showed that sampling location does not affect experimental results
due to the homogeneity of the culture. Manual optical density
measurements at 750 nm were performed on a Hach DR5000 spec-
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trophotometer (see Supplementary material for details on sample
preparation).

2.3.4. Lipid assay
Lipid fractions were determined using an in situ transesterifica-

tion. The following procedure was performed based on the meth-
ods of Gonzalez et al. (1998): 5 mg of microalgae sample was
spun down at 4000 relative centrifugal force (RCF) for 5 min fol-
lowed by the removal of the supernatant. An auto-pipette was used
to dispense 2.5 mL of 0.2 N KOH in methanol onto the 5 mg micro-
algae pellet. Samples were pipette mixed and transferred to a glass
test tube previously washed in 1% HCl acid. An additional 2.5 mL of
0.2 N KOH in methanol was added and pipette mixed. Samples
were then aggressively mixed using a VWR Analog Vortex Mixer
on a speed setting of 10 for 20 s followed by heating to 37 �C for
30 min. 1 mL of acetic acid and 2 mL of HPLC grade heptane were
then added and the samples were aggressively mixed by using a
VWR Analog Vortex Mixer on a speed setting of 10 for 20 s and
then centrifuged at 2000 RCF for 5 min. The organic layer was then
removed and processed in a gas chromatograph (GC) to determine
lipid content and composition. GC details are presented in the Sup-
plementary material.
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3. Results and discussion

3.1. Sample growth results

The model is used to simulate microalgae growth for the ideal
summer (June-solid blue line) and ideal winter (January-dashed
black line) conditions based on cloud free, clear-sky solar irradi-
ance for Fort Collins, Colorado based on the REST2 solar model,
Fig. 1 (Gueymard, 2008).

There are several notable characteristics in Fig. 1. The culture is
cultivated from 1 to 3 g L�1 for both summer-time and winter-time
simulations. Nitrogen uptake is a direct function of light, thus in
the winter the uptake of the bioavailable nitrogen from the media
takes significantly longer. The overall growth in the winter is sig-
nificantly lower than summer due to lower light intensity and
shorter days. The specific growth rate during the dark period is
negative due to respiration effects for both cases. The results pre-
sented in Fig. 1 are typical of the function of growth observed at
the Solix research and development facility.

3.2. Growth model validation

Validation of the bulk growth model was performed by quanti-
tatively and qualitatively comparing modeled results with real
world growth results. Validation of the model is based on the
American Institute of Aeronautics and Astronautics definition of
model validation with the intended use of the model presented
is accurately capture the bulk growth and lipid production of an
outdoor scalable photobioreactor system (AIAA, 1998).

Two panels (A & B) were monitored during peak summer-time
(high-light data); panel A for approximately 3 weeks followed by
panel B for an additional three. Winter-time (low-light data) was
also collected for approximately 3 weeks in November and Decem-
ber to complete the data set. Reactor configuration, light, and tem-
perature data (see Supplementary material) from the location of
the outdoor photobioreactor installation was used as primary in-
puts to the model with 1 week of summer-time (high-light data)
and 1 week of winter-time (low-light data) model productivity re-
sults plotted against real time growth data and manual OD 750
samples, Fig. 2.

As shown in Fig. 2, the model qualitatively captures the growth
trends from day to day including respiration during the dark peri-
od. A more quantitative comparison of the modeled growth versus
actual growth on a minute time scale is presented in Fig. 3 for sum-
mer-time (high-light data) and winter-time (low-light data).

The maximum deviations over the 9 weeks worth of data pre-
sented in predicted biomass versus measured biomass are 0.26
and �0.23 g L�1 respectively. Analysis of the difference between
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the measured biomass density and the predicted biomass density
on a minute time scale shows a mean of �0.00339 g L�1 with a
standard deviation of 0.0678 g L�1 (n = 70,224), indicating the
model accurately captures the bulk growth of the system however,
slightly overestimates the growth. The model is shown to be robust
up to 160 h under real diurnal light of varying intensity with a
maximum overestimation of 0.15 g L�1 (9.2%) and under estima-
tion of 0.06 g L�1 (�2.8%) and average over prediction of 3% for
the 8 batches modeled, Table 2.

The validated biomass model incorporates real diurnal light and
meteorological effects to accurately capturing the bulk biomass
growth of the scalable outdoor photobioreactor system modeled.
For the purposes of predicting bulk biomass growth under instan-
taneous and batch operation for real-world climactic and thermal
conditions, the model is considered validated to within the accura-
cies described above.
3.3. Lipid model validation

Lipid accumulation in microalgae can be triggered by a variety
of variables including but not limited to nutrients, pH, salinity,
temperature, and light (Fabregas et al., 2004; Fang et al., 2004;
Hu and Gao, 2006; Richmond, 2004; Suen et al., 1987). The system
being modeled here enters a nutrient depleted stress mode. Lipid
levels as predicted by the model to reach a maximum of 44%. Lipid
percentages in literature for Nannochloropsis oculata grown in
batch mode have been reported to vary with a maximum of 55%
(Suen et al., 1987). Lipid percentage of the biomass was monitored
on a regular basis for 3 weeks of operation and is presented along
with lipid percentage as predicted by the model in Fig. 4.

The model accurately captures the trend of the lipid content.
The reactors modeled did achieve a maximum lipid percentage of
51%, 9 days after inoculation during normal operation, which is
slightly higher than the model. Biologically, cultures grown in
batch mode will transition from linear growth into stationary
growth depending on nutrient availability and other factors. A dif-
ferent physiological model representing growth and lipid accumu-
Table 2
Summary of total change in biomass as predicted by the model and measured by the
sensor for 8 batches, (6 high light and 2 low light) including total time of the batch.

Reactor Model (Dg L�1) Actual (Dg L�1) Batch Length (h)

A-high light 1.89 1.82 135
A-high light 1.77 1.62 157
A-high light 1.56 1.54 167
A-low light 1.08 0.99 199
B-high light 2.08 2.14 147
B-high light 2.27 2.20 168
B-high light 1.68 1.60 166
B-low light 0.74 0.78 301
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Fig. 4. Plot of lipid percentage in biomass for 3 weeks of continual monitoring over
11 day period overlaid on top of predicted lipid percentage from model.
lation for the stationary phase is required to accurately represent
growth and composition of the microalgae. In stationary growth,
energy dedicated to lipid accumulation would need to be consid-
ered in more detail.

For the purposes of predicting biomass lipid content under
batch operation for real-world climactic and thermal conditions,
the model is considered validated with a standard deviation of er-
ror of 8.8% lipid by mass.

3.4. Sensitivity analysis

A sensitivity analysis was performed on all inputs to the model.
The sensitivity analysis involved increasing and decreasing each
input parameter by 20% and evaluating the biomass production
at 100 h (see Supplementary material). An analysis of variance
was used to estimate t-ratios for each input parameter. Results
are presented in Fig. 5.

As illustrated in Fig. 5, variables associated with growth param-
eters, light modeling, and nitrogen factors have the largest effect
on the biomass productivity. The model is insensitive to variations
in some parameters such as molecular weight of the microalgae.

Results from this sensitivity analysis are important to consider
when adapting the model to other microalgae species. Factors with
a t-ratio greater than the t-ratio at the 95% confidence interval have
a large effect on the models output thus need to be known to high-
er degree of certainty than characteristics inside this interval.

3.5. Implications of improved modeling on practical production
potential of microalgae

The majority of studies that contemplate the large scale land
use requirements of biodiesel from microalgae are calculated by
linearly scaling small-scale laboratory productivity data. This sim-
plistic scaling leads to erroneous assumptions about industrial
growth facility function, and a large uncertainty in the modeled
productivity potential of microalgae. Values reported in literature
range from 12 m3 ha�1 yr�1 reported by Schenk et al. (2008) to
184.0 m3 ha�1 yr�1 reported by Yeang (2008) with Huntley and
Redalje (2007), Sheehan et al. (1998), Wijffels and Barbosa
(2010), Hirano et al. (1998), Campbell et al. (2010), Lardon et al.
(2009), and Chisti (2007, 2008) reporting values between these
extremes.

The validated model presented in this study provides a more
detailed representation of industrial scale microalgae growth facil-
ities to more accurately represent the true current microalgae
growth potential. To understand the effects that this more detailed
model will have on these scalability assessments, the model will be
used to simulate a year of growth for a proposed high productivity
location.

The southwestern US is primarily where deployment of first
generation, large-scale microalgae facilities has been proposed.
Historical weather data from Yuma, Arizona were input to the
model because Yuma has the most cloud free days in the US
(242 days) with 90% of annual sunlight hours being cloud free. This
location assumption assumes that water and CO2 are readily avail-
able and that optimum thermal conditions exist in the thermal ba-
sin. Two different harvesting schemes were simulated: ‘‘time
harvest’’, where harvest of the culture occurs at 160 h or 3 g L�1

(whichever occurs first), which is more representative of the func-
tion of the research and development facility used in model valida-
tion, and ‘‘density harvest’’, where culture is harvested at 3 g L�1

regardless of elapsed time.
These results represent current maximum yields which might

be achievable in the continental US due to the ideal thermal condi-
tions and ideal geographic location selected. The time harvest sim-
ulation results in productivity of 5.72 � 104 kg ha�1 yr�1 of



Fig. 5. Sensitivity of model inputs presented in tornado plot format. Model inputs were altered by ±20% with total predicted biomass production after 100 h compared to
baseline scenario. Vertical lines represent 95% confidence interval.
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biomass or 26.452 m3 ha�1 yr�1 of oil. For the density harvest, the
simulation results in a productivity of 5.79 � 104 kg ha�1 yr�1 of
biomass or 28.744 m3 ha�1 yr�1 of oil. The time harvest scheme
represents a �1.1% difference in biomass but a �8.7% difference
in oil production, relative to the density harvest scheme. Culture
growth in the high-light, long days of summer facilitates the
growth of the culture to 3 g L�1 in a short period of time. In the
winter, the lower light intensities and shorter days mean 3 g L�1

is not achievable in a 160 h time period, thus the microalgae is har-
vested before reaching maximal lipid content.

The validated model predicts a realistic annual productivity po-
tential that is 7 times lower than the highest value reported in the
literature surveyed, and is significantly lower than the median pro-
ductivity reported in literature, as shown in Table 3. The reduced
productivity can be attributed to a variety of effects that are present
in this model but are not present in other models. The development
Table 3
Table comparing reported productivity potentials (some calculations performed for
comparison purposes) from various sources. Some authors reported a range of
productivity potential, consequently the high (��) and low (�) values are repeated.

Source Oil
(m3 ha�1 yr�1)

Notes

Schenk et al. (2008)� 12 30%a

Chisti (2008)� 20.7 20%a, qoil = 880 kg m�3

Bulk model, this study 26.5 Idealized, Time Harvest,
Yuma, AZ

Huntley and Redalje
(2007)�

30.7 40%a, qoil = 880 kg m�3

Wijffels and Barbosa
(2010)

40 50%a, 3% solar conversion
efficiency

Yeang (2008)� 46
Hirano et al. (1998) 49.8 40%a, qoil = 880 kg m�3

Lardon et al. (2009) 51.4 50%a, qoil = 880 kg m�3

Chisti (2008)b�� 51.8 50%a, qoil = 880 kg m�3

Batan et al. (2010)� 51.8 50%a, qoil = 880 kg m�3

Chisti, 2007� 58.7 30%a

Sheehan et al. (1998)� 62.2 50%a, qoil = 880 kg m�3

Campbell et al. (2010) 62.3 50%a, qoil = 880 kg m�3

Schenk et al. (2008)�� 98.5 50%a

Huntley and Redalje,
2007��

99.5 40%a, qoil = 880 kg m�3

Batan et al. (2010)�� 103.8 50%a, qoil = 880 kg m�3

Sheehan et al. (1998)�� 124.4 50%a, qoil = 880 kg m�3

Chisti (2007)�� 136.9 30%a

Yeang (2008)�� 184

a Oil content in biomass.
of the more detailed bulk growth and lipid productivity model al-
lows for the consideration of the effects of facility scale, harvesting
strategies, meteorological effects, seasonal effects, and more.
Although the resulting productivity of 26.5 m3 ha�1 yr�1 of oil
may still represent an optimistic estimation of the annual produc-
tion of oil at a large-scale photobioreactor facility, this result repre-
sents the most realistic industrial scale productivity value to date.

3.6. Life cycle assessment (LCA) modeling

LCA is a fundamental tool that has been used to evaluate the
sustainability of biofuels. The results from LCA are highly sensitive
to engineering model assumptions, definitions of system bound-
aries, life-cycle inventories, process efficiencies, and functional
units. Increasing interest in microalgae as a secondary feedstock
for transportation fuels has lead to multiple LCA studies. Inherent
in these studies is an engineering model of the microalgae to bio-
fuels process that incorporates a growth model.

The majority of the microalgae LCA published to date use a sim-
plistic growth model based on a daily productivity number ob-
tained from a small scale laboratory growth facility. Large scale
productivity over an entire year is then calculated based on this
laboratory number. Batan et al. (2010), Lardon et al. (2009), Hirano
et al. (1998), and Campbell et al. (2010) all use a fixed growth rate
between 10 and 30 g m�2 d�1 (3.6 � 104–11.0 � 104 kg ha�1 yr�1)
in their growth models. Due to the lack of published data on real-
istic, large-scale productivities, three of the studies discussed
above run multiple scenarios using a range of fixed growth rates
in modeling the productivity of large-scale facilities (Batan et al.,
2010; Campbell et al., 2010; Lardon et al., 2009). This is indicative
of the sensitivity of LCA analysis to the growth models imple-
mented in the process model.

This study presents a validated, large-scale growth model that
accurately captures diurnal and annual weather impacts on micro-
algae growth. The model can be integrated with historical weather
data and can be used to more accurately represent the growth of
microalgae at specific geographical locations. The majority of the
geographic locations of the LCA studies surveyed are warm coastal
regions. Meteorological data for the costal location of San Diego,
California were used to illustrate realistic biomass productivity
and compare results to the LCA studies discussed. The thermal ba-
sin temperature was assumed to be regulated for optimum growth
and the time harvest strategy was used, resulting in a productivity
of 5.42 � 104 kg ha�1 yr�1 of biomass or 15 g m�2 d�1. This analysis



Symbol Description Unit

cC,X carbon content of biomass in
reactor

g�L�1

cC,X0 carbon content of biomass at
previous time step in reactor

g�L�1

qN,X cell quota of nitrogen in biomass g �g �1

qN,X0 amount of nitrogen present at
previous time step in biomass

g�g�1

qN,Xmax maximum cell quota for nitrogen
in biomass

g�g �1

qN,Xmin minimum amount of nitrogen in
biomass

g�g�1

R universal gas constant J�K�1�mol�1

rRc maintenance respiration rate
(carbon)

h�1

rRN respiration constant for nitrogen h�1

rN specific uptake rate of nitrogen h�1

rNcalc calculated specific uptake rate of
nitrogen

g�g �1�h�1

rNmax maximum specific uptake rate of
nitrogen

g�g �1h�1

t time seconds
T bath temperature �C
Topt optimum growth temperature �C
a absorption coefficient m2�g�1

f biosynthetic efficiency g�g �1

l carbon specific growth rate h�1

lmax Maximum carbon specific growth
rate

h�1

um photon efficiency g�(lmol
photons)�1

uqN ext uptake of external nitrogen
concentration efficiency

–

uqN,X int uptake of internal nitrogen
concentration efficiency

–

uT temperature efficiency factor –
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shows that the current realizable productivity of microalgae is less
than the median of the typical growth rates used in the LCA models
surveyed.

To enable more accurate environmental assessments of biofuel
from microalgae, LCA studies need to use more accurate growth
models. To date, LCA studies have made geographic location
assumptions based on material availability and nearness to mar-
kets, but have not included the effect of geographic location on
growth. The model developed for this study will enable a more
accurate representation of feasible large-scale production, thus
improving the environmental assessment of the microalgae to bio-
fuels process.

4. Conclusion

A literature-based bulk growth and lipid production model was
constructed incorporating 16 species-specific variables, using light
and temperature as primary inputs. Validation of this model was
done utilizing 9 weeks of stochastic weather and growth data from
a large scalable outdoor photobioreactor cultivating Nannochlorop-
sis oculata. Historical weather data for the idealized solar location
of Yuma, Arizona was used to illustrate the current productivity
potential of 5.72 � 104 kg ha�1 yr�1 of biomass or 26.4 m3 ha�1

yr�1 of oil given optimum thermal conditions. The model was also
used to illustrate the requirement for more in-depth and accurate
growth modeling for LCA analysis.
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Appendix A. Nomenclature
Symbol Description Unit

B reactor thickness m
Biomass biomass composition –
CHO percent carbohydrate in biomass –
Lipid percent lipid in biomass –
cNmedium nitrogen concentration in media g�L�1

PRO percent protein in biomass –
cXdw biomass concentration in reactor g�L�1

E (L) light intensity at distance L lmol�m�2�s�1

E0 light intensity incident on reactor
wall

lmol�m�2�s�1

Ea activation energy carboxylation
Rubisco

J�mol�1

Eav average light intensity in
photobioreactor

lmol�m�2�s�1

Ek light saturation level lmol�m�2�s�1

f(T) temperature function –
KN half saturation constant for

nitrogen uptake
g�L�1

L distance from reactor wall into
culture

m

Pc photosynthetic rate (carbon) h�1

Pc_calc calculated maximum
photosynthetic rate (carbon)

h�1

Pc_max maximum photosynthetic rate
(carbon)

h�1
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.biortech.2011.01.019.
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