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Abstract

We propose a new completely positive measurement operator, which can improve
the numerical precision in quantum trajectory simulations. For continuous measure-
ments, the system’s dynamics conditioned on diffusive measurement records can be
described by the Itô stochastic master equation, which is sufficient for an infinitesi-
mal time scale in quantum trajectory simulations. However, in real measurements,
the time scale cannot be infinitesimal and the error from finite time steps is a key
concern of this work. Currently, there are several approaches proposed to improve
the precision error, namely, the Rouchon-Ralph approach [1], the Guevara-Wiseman
approach [2], and the quantum Bayesian approach [3–6]. These approaches only sat-
isfy necessary conditions for measurement operators only to lower order in the time
scale. We therefore derive the new approach, the high-order completely positive map
which gives the elegant measurement operator from the physical intuition, a quantum
system coupled to a bosonic (harmonic oscillator) bath. This measurement operator
(map) satisfies the completeness relation to the second order in dt. The map also gives
the unconditioned evolution which agrees with the second order in dt of the Lindblad
master equation expansion. Furthermore, we also show numerical results that the
high-order completely positive map yields the most accurate trajectories comparing
with the other existing approaches.
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Chapter 1

Introduction

An open quantum system has become an important concept in quantum measure-

ments. In general, a quantum system can be measured by coupling it with a bath

(or a measuring device) in order to study the system’s evolution. The dynamics of

an open quantum system can typically be derived from the Born-Markov approxi-

mation [7, 8]. The Born approximation is based on the assumption that the system

of interest couples weakly to its bath. For the Markov approximation, this approx-

imation is based on the idea that the interaction between the system and the bath

is memoryless. In other words, the correlation time between the two is shorter than

a time resolution dt for the system evolution. By tracing such the combined system

over the bath’s degree of freedom, we then obtain the unconditioned evolution of

the system alone, which can be described by a master equation (ME) [7–11]. How-

ever, in the scenario that the bath’s state is measured by a detection apparatus, the

system dynamics should be conditioned on the measurement records, which leads to

the “quantum trajectories” [7, 8]. This process is sometimes called “unraveling” the

master equation. Furthermore, by summing over all the conditioned evolutions, or

quantum trajectories, one can get back the Lindblad unconditioned evolution.

In this thesis, we consider a particular measurement called the continuous weak

measurement, which is new concept different from the conventional projective mea-

surement (collapsing style) that we leaned in the undergraduate level. For con-

tinuous measurements, the bath is observed continuously in time, giving stochas-
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tic diffusive-type records. Therefore, the system’s dynamics (quantum trajectories)

evolves stochastically conditioned on the record realisations. The quantum trajectory

for this case is usually described by the Itô stochastic master equation (Itô SME)

[7, 8, 12, 13], where the stochasticity arises from the diffusive records. The Itô SME

is a type of the stochastic differential equation, which can be solved by integration

using an infinitesimal time step dt.

There have been several experiments demonstrating the quantum trajectories,

for example, quantum jumps and diffusive measurements in superconducting qubit

experiments using microwave devices [2, 7, 12, 14–20], and the measurement of qubit’s

fluorescence from the atomic decay with emissions of photons [21, 22]. However, in real

measurements, we cannot enforce the infinitesimal time scale as required by the SME.

If the measurement is done with too small dt, each step of the measurement record

will not be independent of each other and the Markov assumption will be invalid. In

this thesis, we therefore consider using maps (or measurement operators) to describe

the system’s dynamics, since they can used to be solve the dynamics with a small

but finite time step dt. To avoid the cumulative errors from the time resolution,

the maps need to give accurate results to high order in dt, in order to be used to

describe the quantum trajectory. Moreover, the maps need to necessarily satisfy the

completeness relation [7] and should agree with the Lindblad unconditioned evolution

to high orders in dt. This is to make sure that the trace preserving condition for the

system’s state does hold.

Quantum trajectories can be simulated by several approaches. The conventional

Itô map is used to derive the SDE [7] works fine theoretically, but fails at solving valid

quantum trajectories from experimental data because it satisfies the completeness re-

lation only to the order O(dt). The quantum Bayesian approach has been introduced

to calculate the qubit trajectories in the quantum dots experiments [3–6]. In the

recent work by Rouchon and Ralph, they proposed a way to implement the classical

Euler-Milstein numerical scheme to the Itô SME for quantum trajectory [1, 23, 24],

as an alternative approach for quantum feedback control [25]. However, the proposed

map still only satisfies the completeness relation to O(dt). The most recent work by

16



Guevara and Wiseman proposed a new map which satisfies the completeness rela-

tion to high order in dt and used them for the quantum state smoothing estimation

[2, 26]. However, these maps still does not agree with the Lindblad unconditioned

state expanded to O(dt2) derived by Steinbach et al. in Ref. [16].

In this thesis, we aim to propose the new measurement operator (map) which

satisfies our criterions (1) satisfies the completeness relation to second order in dt,

and (2) the unconditioned state in agreement with the expansion of the Lindblad

master equation to second order in dt. We also show numerical simulation results

from the qubit z-measurement and make the comparison among different approaches

using the trace distance.

This thesis is organised as follows. In the next chapter, Chapter 2, we briefly

review the background knowledge about the open quantum system and quantum

measurement theory. We review two cases of the system’s evolution which are un-

conditioned and conditioned evolution. The unconditioned evolution can be derived

by tracing out over all the bath’s degree of freedoms. On the other hand, the condi-

tioned evolution or quantum trajectory is constructed from the continuous measure-

ment record which is related to a stochastic process. Moreover, we also review the

dephasing or decoherence effects which are the relevant processes in open quantum

systems.

In Chapter 3, we review the four existing approaches, which are the Itô map, the

Rouchon-Ralph approach, and the Guevara-Wiseman map. We show the calculations

of the completeness relation and the unconditioned state evolution.

In Chapter 4, this chapter we derive our proposed high-order completely positive

map from the system (qubit) bosonic-bath coupling. We first derive the map for a

simple system which has a single measured channel, and the system’s Hamiltonian

is set to be zero (Ĥ = 0). We then relax that constraint and add the system’s

Hamiltonian and the multiple unmeasured dephasing channels. Lastly, we give the

examples, the map for the qubit z-measurement and the measurement of the qubit’s

fluorescence.

In Chapter 5, we explain the numerical simulation we use for an example of the

17



z-measurement of superconducting qubit experiments. We first explain the basic idea

of such experiment briefly. Then, in the simulation section, we generate the true mea-

surement records in order to use to simulate quantum trajectories for the different

approaches. We end this chapter by showing the comparison among four approaches

which are the Itô map, the Rouchon-Ralph approach, the high-order completely pos-

itive map, and the quantum Bayesian approach.

Finally, we finish our thesis with the conclusion chapter, which also includes a

discussion about the simulation results.
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Chapter 2

Background

This chapter is organised as follows. We first explain the concept of quantum

states for a single qubit, which is represented by a 2 ⇥ 2 density matrix and will be

used throughout this thesis. In Section 2.2, we review the idea of the open quantum

system, which is an important concept in quantum measurement as the system of

interest has to be coupled with a bath state. In the next section, Section 2.3, we

show the idea of the operations to describe the time evolution of the quantum state

for an open quantum system. The evolution of the quantum state can be considered

in two scenarios, namely, the unconditioned evolution and conditioned evolution. In

Section 2.4, the unconditioned evolution, it describes the evolution of the quantum

state in the case that we have no information about the bath’s state by tracing out

the combined system over its bath degree of freedom obtaining the Lindblad master

equation. However, in the scenario that we have information about the bath’s state,

we can unravel the master equation which finally obtain the conditioned evolution. In

Section 2.5, we review the conditioned evolution which can be done by a measurement

operation. In this thesis, we focus on the continuous weak measurement in Section

2.6 which is associated with the stochastic process. In Section 2.7, we review the idea

of the stochastic process, we then go on to the quantum trajectory in Section 2.8,

which describes the qubit evolution stochastically. Finally, we end up this chapter

with the dephasing processes in Section 2.9, we investigate the T1 and T2 dephasings

which occur in the open quantum system.
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2.1 Quantum State

In quantum computing, a qubit or a quantum bit is a two-level system, which can

be realised on many physical platforms. For example, in a spin 1/2 particle, a qubit

can be constructed from the spin state of an electron, where the two states corre-

spond to the spin up and spin down. Regardless of a physical platform, a quantum

mechanical state of a two-level system can be expressed as a 2 ⇥ 2 matrix, called a

density matrix or a density operator. In terms of the Pauli matrices, a density matrix

can be written as

⇢ =
1

2
(1̂ + x�̂x + y�̂y + z�̂z) =

1

2
(1̂ + ~r · �̂), (2.1)

where ~r = (x, y, z) is called a Bloch vector, and �̂ = (�̂x, �̂y, �̂z) is a vector whose

entries are Pauli matrices. The general properties of the density operator are

1. ⇢ has trace equal to one i.e., Tr[⇢] = 1 (trace condition) .

2. ⇢ is a positive operator i.e., h'|⇢|'i > 0 (positivity conditon) .

2.2 Open Quantum System

Open quantum systems are quantum systems that interact with their environment

or bath. The usual treatment is to consider a combined system (a quantum system of

interest and the bath) as a closed system evolving unitarily. One can then trace out

the bath’s degrees of freedom to obtain a reduced dynamics of the quantum system

of interest. However, the system’s dynamics is also strongly dependent on whether

there exists any observation of the bath. In the case where the bath is measured, the

system’s dynamics will be affected, as a result of measurement backaction.

Considering a combined system which has its state living in a tensor product of

Hilbert spaces Hs ⌦ He, where Hs and He are the Hilbert spaces of the system of

interest and its bath, respectively. Using the Born-Markov assumption, we can write

the combined system’s state % as initially prepared as a product state % = ⇢ ⌦ ⇢e

20



[7, 10, 11] (the weak coupling from the Born approximation). In this work, we are

interested in the continuous observation of the bath; therefore, we will investigate

the time evolution of such combined system during an infinitesimal time dt. Let the

dynamics of the combined system be described by a unitary map Udt[•] = Ût+dt,t •

Û
†
t+dt,t mapping the combined state from time t to t + dt. Assuming that the state

of the bath at time t is set as one of its eigenstate, i.e., ⇢e(t) = |e0i he0| (using |eki as

the bath’s eigenstates) [10], we can write the combined system’s dynamics as,

%(t+ dt) = Ût+dt,t(⇢t ⌦ |e0i he0|)Û †
t+dt,t, (2.2)

where ⇢t is the system’s state at time t.

After the evolution in Eq. (2.2), the system become entangled with the bath. In

the regime where the bath’s state is not observed, or equivalently no information

available about the bath’s state after the interaction, the reduced density matrix for

the system’s state can be found by taking a trace over the bath’s degree of freedom,

resulting in the decoherence (non-unitary evolution) [7, 10, 11, 27] on the system’s

state. The decoherence can be thought of as a result of noises from the bath affecting

the system. However, in the case where there is an observation, i.e., the bath’s state

is measured by some measurement detection scheme, then the system’s state should

reflect the information gained from measuring the bath. We will see more discussions

on the conditioned evolution in Sections 2.5 and Chapter 3.

2.3 Superoperators and Operations

An open quantum system requires a definition of a superoperator, which describes

a change in a quantum state. In this case, the quantum state evolves continuously

in time, so the superoperator map will be defined for the infinitesimal time step. In

general, we can define a superoperator to map the density matrix as

⇢ ! ⇢
0 = M⇢, (2.3)
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where the superoperator M is on the space of Hilbert-space operators and must

satisfy the following identities. [7]

• M has to be trace-preserving. That is, for any ⇢, 0  Tr[M⇢]  1.

• M has to be a linear map operator, giving

M
X

j

}j⇢j =
X

j

}jM⇢j. (2.4)

• M has to be completely positive. Completely positive operations map positive

operators to positive operators,

M : ⇢ � 0 ! ⇢
0 = M⇢ � 0. (2.5)

If we consider an extra arbitrary subsystem R coupling with the subsystem Q,

we can write a map of the form IR ⌦ MQ for the combined system RQ also,

which has to also be completely positive,

IR ⌦MQ : ⇢RQ � 0 ! ⇢
0
RQ

= (IR ⌦MQ)⇢RQ � 0. (2.6)

The superoperator M is said to be a quantum operation if it satisfies these three

identities. An operation has the sum representation or the Kraus representation,

M(⇢) =
X

j

M̂j⇢M̂
†
j
, (2.7)

where M̂j is a Kraus operator which satisfies

1̂�
X

j

M̂
†
j
M̂j � 0. (2.8)
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2.4 Unconditioned Evolution

As we mentioned earlier, the system’s dynamics alone can be obtained without

conditioning on any measurement result by tracing out the bath’s degree of freedom,

we then get the unconditioned dynamics. From Eq. (2.2), we can write that the

system’s state is given by

⇢(t+ dt) = Tre
h
Ût+dt,t(⇢t ⌦ |e0i he0|)Û †

t+dt,t

i
, (2.9)

where the trace Tre[· · · ] ⌘
P

k
hek| · · · |eki is defined for the basis states of the bath’s

Hilbert space. Under the Born-Markov assumption, one finds that the reduced sys-

tem’s dynamics Eq. (2.9) can be written in the form [7],

⇢(t+ dt) = e
dtL

⇢(t), (2.10)

where

L• = �i[Ĥ, •] +
NX

j=1

D[ĉj]•, (2.11)

is the Lindblad superoperator. Here we define Ĥ as a Hermitian operator describing

the unitary dynamics of the system’s state and ĉj as the Lindblad operators. The

superoperator D describes all decoherence channels defined as D[ĉ]• = ĉ•ĉ†�1
2

�
ĉ
†
ĉ, •},

noting that we have taken ~ = 1 throughout the thesis.

The Lindblad increment evolution Eq. (2.10) can be solved in the time-continuum

limit, dt ! 0, where one can expand the exponential superoperator to first order in

dt,

⇢(t+ dt) = ⇢(t) + dtL⇢(t), (2.12)

giving the usual Lindblad master equation @t⇢ = L⇢(t) [28]. However, in the scenario

where one has to solve Eq. (2.10) with a finite dt, we need to expand the exponential

23



to higher orders in dt for a more accurate result.

Let us first consider equations with a single Lindblad operator ĉ and no unitary

dynamcis Ĥ = 0, in order to focus on the dynamics from measured and unmeasured

decoherence channels. By performing the Taylor expansion, on Eq. (2.10) we obtain

the result up to second order in dt derived by Steinbach et al. in Ref.[16], which gives

⇢(t+ dt) =

✓
1 + dtL+ 1

2dt
2L2

◆
⇢(t), (2.13)

= ⇢(t) +D[ĉ]⇢(t)dt+ 1
2D[ĉ]

⇥
D[ĉ]⇢(t)

⇤
dt2,

where we have used

D[ĉ]
⇥
D[ĉ]⇢(t)

⇤
= 1

4

⇥
⇢(t)(ĉ†ĉ)2+(ĉ†ĉ)2⇢(t)

⇤
+ 1

2 ĉ
†
ĉ⇢(t)ĉ†ĉ� 1

2

⇥
ĉ⇢(t)(ĉ†)2ĉ+ ĉ

†
ĉ
2
⇢(t)ĉ†

⇤

� 1
2

⇥
ĉ⇢(t)ĉ†ĉĉ† + ĉĉ

†
ĉ⇢(t)ĉ†

⇤
+ ĉ

2
⇢(t)(ĉ†)2. (2.14)

We will use this expansion later in Chapter 3 to check properties of measurement

operations.

2.5 Measurement Backaction and Conditioned Evo-

lution

Let us consider a scenario that one acquires information about the system by

measuring the state of the bath; for example, by collapsing the detector’s state to

|edi which gives a measurement outcome d. We can unravel the Lindblad master

equation in Eq. (2.12) and obtain the system’s state conditioned on measurement

records. One can project the combined system’s state onto |edi and then trace out

the bath degree of freedom. This gives the conditioned reduced system’s state ⇢d as

(d indicates for the conditioned state)

⇢d(t+ dt) / Tre{|edi hed| %(t)} = M̂d⇢(t)M̂
†
d
, (2.15)
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where M̂d = hed| Ût+dt,t |e0i is a measurement operator. To get the normalised form,

we divide Eq. (2.15) by its trace, giving

⇢d(t+ dt) =
M̂d⇢(t)M̂

†
d

Tr
h
M̂d⇢(t)M̂

†
d

i . (2.16)

Noting that the normalisation factor in Eq. (2.16) is the probability of getting the

measurement outcome d given the state ⇢(t), which is

}(d|⇢(t)) = Tr
h
M̂d⇢(t)M̂

†
d

i
. (2.17)

Let us now consider the unconditioned evolution again. We can obtain the un-

conditioned evolution from summing over all the measurement outcomes k. That

is

⇢(t+ dt) = Tre[%(t)] =
X

k

M̂k⇢(t)M̂
†
k
, (2.18)

which coincides with the expression in Eq. (2.10),

⇢(t+ dt) = e
dtL

⇢(t) =
X

k

M̂k⇢(t)M̂
†
k
. (2.19)

Here, we have left the dominator of Eq. (2.19), which should be its trace. This is

because the norm is equal to 1 to preserve the total probability. Consequently, the

measurement operator must satisfy the completeness relation,

X

k

M̂
†
k
M̂k = 1̂, (2.20)

which is one of the important properties of the measurement operator we consider

in this work. For continuous measurement outcomes, we can check the complete-

ness relation by replacing the sum with an integral over all possible continuous-value

relevant.
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Figure 2-1: This figure [29] displays the probability distribution of the measurement
readout of a qubit measurement in z-basis (blue lines for |0i and red lines for |1i).
(Left) Strong (projective) measurement. (Right) Weak measurement.

2.6 Continuous Weak Measurement

Quantum continuous weak measurements is a new concept different from the pro-

jective (strong) measurement which assumes a collapse of the state of the measured

system to an eigenstate of the measured observable. In this section, we use an exam-

ple of a measurement of a Hermitian observable (�̂z) and compare between its strong

measurement and its weak measurement.

We showed in the previous section how the measurement operator plays a role

in the quantum measurement theory. The measurement operator describes how the

state of the system changes (backaction) as a result of a measurement. Let us consider

the strong measurement. If one measures the system with a projective measurement,

such system will collapse to an eigenstate of the measured observable. If one were to

repeat the measurement again, the system state will remain unchanged. However, for

the weak measurement, the system evolution can gradually change as in Eq. (2.15).

By measuring the system continuously in time, we can track the continuing evolution

of the system’s state.

For a measurement of a Hermitian observable, one can see the difference of both

measurement styles by looking the distribution of the measurement readouts as in

Figure 2-1. For a strong measurement, the variance of the readout’s distribution is
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small compared to that of the weak measurement. For the latter, one obtain less

information of the system, since the overlaping area of both measurement readouts

is large. That is, given a measurement result somewhere in the overlapped area,

we cannot say exactly which eigenstate the state has collapsed to. The state is then

some superposition of possible eigenstates. Moreover, the broad distribution indicates

that the measurement results are random numbers, which will simulate a stochastic

process in time. We are going to investigate this in more detail in the next section.

2.7 Relevant Theories from Classical Stochastic Pro-

cess

In this section, we briefly review two concepts of stochastic differential equations

(SDEs). One is the conventional Itô SDE and another is the Euler-Milstein scheme.

The stochastic process describes a time evolution which contains a stochastic element,

i.e., the Wiener increment dW . The properties of the Wiener process are the zero

mean, hdW (t)i = 0 and its variance proportional to dt, hdW 2i ⇠ dt. We also show

the Euler-Milstein technique, which is the extension of the Itô SDE for high order in

dW .

2.7.1 Itô SDEs

Given a system’s variable of interest x, an Itô stochastic differential equation can

be written generally in the time continuous form

dx = f(x)dt+
mX

r

gr(x)dWr, (2.21)

where f(x) and gr(x) are arbitrary functions, and dWr is a Gaussian Wiener incre-

ment. The sum is over all m noises that affect the system. We can also define a

Gaussian white noise from the wiener process as ⇠(t) = dW/dt, which satisfies the
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following identities [7, 14, 30],

h⇠(t)i = 0, (2.22a)
⌦
⇠
2(t)

↵
= 1/dt, (2.22b)

h⇠(t)⇠(t0)i = �(t� t
0), (2.22c)

where h•i is the expectation value over all realisations of ⇠(t). Noting that we can

interpret Eqs. (2.22) as a Gaussian white noise with zero mean, 1/dt variance. More-

over, the noises at different time steps are independent of each other (which is a

result of the Markovian assumption). The Itô SDE Eq. (2.21) is valid when dt is

infinitesimal, and thus the dynamics can be obtained by using only the first order in

dW .

2.7.2 Euler-Milstein Scheme

The Euler-Milstein scheme [23] is the technique to improve the accuracy of the

Itô SDE by adding terms with high order in dW . We will here show the final result

and leave the detailed derivation in Appendix-A. Let us write equations in the time-

discrete form. The Euler-Milstein scheme for the Itô SDE in Eq. (2.21) is given by

the numerical scheme as

xn+1 = xn + f(xn)�t+
mX

r=1

gr(xn)�Wr,n

+
mX

r,s=1

@gs(xn)

@x
· gr(xn)

✓
�Wr,n�Ws,n � �r,s�t

2

◆
, (2.23)

where f(x) and gr(x) are the same as in Eq. (2.21). This equation can give a more

precise dynamics of x than the Itô SDE, where �t is not small enough.
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2.8 Quantum Trajectories

Now that we have introduced the stochastic process, we can write the conditioned

evolution Eq. (2.16) in the dt ! 0 limit. This gives a SDE for quantum states,

which describes a quantum trajectory. A quantum trajectory refers to a path for a

quantum’s system state, which behaves stochastically because it is conditioned on

measurement records. In quantum weak measurements, there have been several ex-

periments demonstrating the quantum’s dynamics, especially, using the homodyne

and heterodyne detections [7, 8, 12, 13]. Let us consider a diffusive homodyne detec-

tion. The information of the measurement readouts (via a measurement operator in

Eq. (2.16)) leads to the stochasticity in the system’s state. Here, we can describe the

system’s dynamics by a stochastic master equation [7],

d⇢

dt
= �i[Ĥ, ⇢] +

X

µ

D[V̂µ]⇢+
X

r

D[
p
⌘rL̂r]⇢+

X

r

p
⌘r

�
H[L̂r]⇢

�dWr

dt
, (2.24)

where Ĥ is the system’s Hamiltonian and a superoperator H is defined as H[Â]⇢ =

Â⇢+ ⇢Â
† �Tr

h
Â⇢+ ⇢Â

†
i
⇢. dWr is a Wiener increment as defined earlier, and ⌘r are

detection efficiencies (⌘r 2 [0, 1]). L̂r and V̂µ are Lindblad operators describing the

coupling channels between the system and the baths. We separate the decoherence

channels, L̂r from the measured channels, V̂r from unmeasured channels.

2.9 Decoherence Effects on Qubits

Performing a measurement can give rise to the dephasing since the system interacts

with its bath. The decoherence channels used in this thesis include the unmeasured

channels (from measurement inefficiency), the T1 spin relaxation, and the T2 dephas-

ing. The T1 and T2 processes are from the spontaneous emission of photons and the

error of the qubit’s phase, respectively.
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2.9.1 T1 spin relaxation

This decoherence occurs from the spontaneous emission of photons. The state of

a quatum system can naturally decay to its ground state. For a two-level (qubit)

system, we denote the atomic ground and excited states as |gi and |ei, respectively.

Let us define the state of the bath as the state of the detection of an emitted photon.

If the atomic decay occurs, the state of the bath is in |1i (one photon is presented).

On the other hand, if there is no atomic decay, the state of the bath is in |0i (the

vacuum state).

Here, we can define the Kraus operators for both processes as M̂1 and M̂0 describe

the evolution of the decay to the ground state (quantum jump) and the evolution of

no-jump state, respectively. There is a probability p that the excited state decays to

the ground state, giving

|gi |0i ! |gi |0i ,

|ei |0i !
p
1� p |ei |0i+p

p |gi |1i . (2.25)

Therefore, we can make sense of the Kraus operators for no-jump M̂0 and jump M̂1

[10], which are given by

M̂0 =

0

@
p
1� p 0

0 1

1

A , (2.26)

M̂1 =

0

@ 0 0
p
p 0

1

A , (2.27)

where M̂k = hk| Û |0i under the unitary evolution of this process Û = exp
n
â
†
b̂� âb̂

†
o

,

where â, b̂ and â
†
, b̂

† are annihilation and creation operators.

We can derive the decoherence process from the sum-representation as in Eq. (2.7).

The T1 process happens when there is the spontaneous emission, but we do not know
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when the photon is emitted as there is no detection. Let us define the qubit state as

⇢ =

0

@⇢ee ⇢eg

⇢ge ⇢gg

1

A ,

the density matrix map for the T1 process becomes,

M(⇢) = ⇢
0 = M̂0⇢M̂

†
0 + M̂1⇢M̂

†
1 ,

=

0

@⇢ee + p⇢gg

p
1� p⇢eg

p
1� p⇢ge (1� p)⇢gg

1

A .

Assuming that the probability of the transition during the time interval �t is

p = �1�t, where �1 is the decay rate of this process. If we apply the channel repeatedly

n times which the total time is t = n�t, then the coefficients of the off-diagonal

elements can be evaluated as (1 � p)n/2 ⇡ e
��1t/2, as well as (1 � p)n, it can be

evaluated as e
��1t. In the scenario that we take the limit t ! 1, the off-diagonal

and the excited elements converge to zero. Consequently, the ground state element

converges to one, obtaining the density matrix as

⇢
0 =

0

@0 0

0 1

1

A , (2.28)

which show that the atom finally decays to the ground state. In general, T1-dephasing

relates to the lowering operator �̂�. The Lindblad operator for this process is

V̂1 =
1p
�1

�̂�, (2.29)

where �̂� is defined as �̂� = (�̂x � i�̂y)/2.
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2.9.2 T2 dephasing

This process can be thought of coming from the random phase of a qubit, as

a result of a fluctuation in the qubit’s frequency. Usually in an experiment, the

qubit’s frequency can be measured by using the Ramsey fringe experiment. However,

there can still be noises that affect the frequency which are undetected. Let the

qubit rotate about the z-axis of Bloch sphere with a frequency !, leading to the

Hamiltonian Ĥ = !

2 �̂z. The qubit evolution under the unitary operator U = e
�i��̂z/2,

where � = !�t, is given by

⇢(t+ �t) =

0

@ ⇢ee e
�i�

⇢eg

e
i�
⇢ge ⇢gg

1

A . (2.30)

We assume that the fluctuation of the qubit phase follows the Gaussian stochastic

process, where its distribution is given by g(�) / e
��

2
/(2�2). We here average over all

the qubit’s phase, giving

⇢(t+ �t) =

0

@ ⇢ee �2⇢eg

�⇤
2⇢ge ⇢gg

1

A , (2.31)

where �2 =
⌦
e
�i�

↵
=
R

d�g(�)ei� = e
��

2
/2 is an exponential decay. If we define the

dephasing rate �, we can see that �
2 = 2��t. We can also write,

⇢(t+ �t) =

Z
d�g(�)e�i�/2�̂z⇢e

i�/2�̂z , (2.32)

=

Z
d�g(�)

�
cos2(�/2)⇢+ sin2(�/2)�̂z⇢�̂z � i cos(�/2) sin(�/2)[�̂z, ⇢]

�
.

Since the distribution of the qubit’s phase is a symmetric distribution and normal-

isable, then the last term vanishes (odd integration), giving

⇢(t+ �t) = (1� p)⇢+ p�̂z⇢�̂z, (2.33)
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where p =
R

d�g(�) sin2(�/2) =
R

d�g(�)
�1�cos(�)

2

�
= 1��2

2 . We rewrite Eq. (2.33),

to get

⇢(t+ �t) =
�1 + �2

2

�
⇢+

�1� �2

2

�
�̂z⇢�̂z. (2.34)

We perform the Taylor expansion of �2 by considering a small �t, giving that �2 =

e
���t = 1� ��t. Then substitute �2 in Eq. (2.34), we have

⇢(t+ �t) = ⇢+
�

2
�t
⇥
�̂z⇢�̂z �

1

2

�
⇢�̂

2
z
+ �̂

2
z
⇢
�⇤

= ⇢+D[
p

�/2�̂z]⇢�t. (2.35)

Therefore, the Lindblad operator of this process is

V̂2 =

r
�

2
�̂z. (2.36)
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Chapter 3

Existing Approaches

Currently, there have been several approaches proposed to unravel the Lindblad

master equation. We can represent each approach by an associated measurement op-

eration, which we will call it a “map”. In this chapter, we will review these approaches

including the conventional Itô map, the map adapted from the Euler-Milstein ap-

proach, and the completely positive map proposed by Guevara and Wiseman [2]. As

we mentioned in Section 2.5, the measurement operator should satisfy the complete-

ness relation Eq.(2.20) and should lead to the unconditioned state described by the

Lindbald master equation as in Eq. (2.19), after summing over all possible measure-

ment results. In this thesis, we only consider diffusive unraveling. For the clarity of

the derivation in this section, we consider a single Lindblad operator ĉ with taking

the system’s Hamiltonian to be Ĥ = 0. We then show the calculation for the com-

pleteness relation and then show the unconditioned state comparing with the high

order expansion of the Lindblad master equation for the three approaches.

3.1 Conventional Itô Map

This approach starts with the Itô stochastic master equation in Eq. (2.24). Con-

sidering the Itô rule dW 2 ⇠ dt, we can write a measurement operator for the Itô SME
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[7] as

M̂I(yt) = 1̂� 1
2 ĉ

†
ĉdt+ ĉytdt, (3.1)

where yt = Tr
⇥
ĉ⇢+ ⇢ĉ

†⇤ + dW/dt is a measurement readout. We can get back the

Itô SME by calculating ⇢(t + dt) = M̂I⇢(t)M̂
†
I /Tr

h
M̂I⇢(t)M̂

†
I

i
, taking limit dt ! 0.

We then perform the calculation to check its completeness relation and the Lindblad

master equation to second order in dt as follows.

• Completeness relation:

Z
dyt}ostM̂

†
I (yt)M̂I(yt) = 1̂ +

1

4

�
ĉ
†
ĉ
�
dt2 +O(dt3) (3.2)

• Lindblad master equation:

⇢(t+ dt) =

Z
dyt}ostM̂I(yt)⇢(t)M̂

†
I (yt)

= ⇢(t) +D[ĉ]⇢(t)dt+
1

4
ĉ
†
ĉ⇢(t)ĉ†ĉdt2 +O(dt3) (3.3)

Here, }ost =
q

dt
2⇡ exp

n
� y

2
t

2dt

o
is an obtensible probability [7]. From the results above,

we can say that this approach works fine for a small time increment dt as shown by

the completeness relation in Eq. (3.2). The Itô map satisfies the completeness relation

and the Lindblad master equation only to the first order in dt.

For multiple channels with the system’s Hamiltonian Ĥ, the measurement opera-

tor is given by

M̂I = 1̂�
✓
iĤ + 1

2

X

r

⌘rL̂
†
r
L̂r

◆
dt+

X

r

p
⌘rL̂rytdt, (3.4)

where L̂r is the measured channel. The state update is given by

⇢(t+ dt) =
M̂I⇢(t)M̂

†
I +

P
j
D[V̂j]⇢(t)dt+

P
r
D[

p
1� ⌘rL̂r]⇢(t)dt

Tr
h
M̂I⇢(t)M̂

†
I +

P
j
D[V̂j]⇢(t)dt+

P
r
D[

p
1� ⌘rL̂r]⇢(t)dt

i , (3.5)
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where V̂j is the unmeasured channel.

3.2 Rouchon-Ralph Approach

In 2015, Rouchon and Ralph [1] proposed the measurement operator to improve

the precision in computing quantum trajectories used in quantum feedback control.

They began with the idea of the Euler-Milstien scheme which is an extension of the

Itô SDE with terms of the second order in the Wiener increment (dW 2) [30]. They

implemented such scheme to quantum stochastic master equation [1] and proposed

the measurement operator of the form

M̂R(yt) = 1̂ +
�
ĉyt �

1

2
ĉ
†
ĉ
�
dt+

1

2
ĉ
2
�
y
2
t
dt2 � dt

�
, (3.6)

where ĉ and yt are the same Lindblad operator and the measurement record as before.

Noting that with the Itô rule, we get y
2
t
dt2 ⇠ dt and we can see that M̂R = M̂I.

We then again perform the calculation for the completeness relation and the Lind-

blad master equation as follows.

• Completeness relation:

Z
dyt}ostM̂

†
R(yt)M̂R(yt) = 1̂ +

✓
1

4
(ĉ†ĉ)2 +

1

2
(ĉ†)2ĉ2

◆
dt2 +O(dt3) (3.7)

• Lindblad master equation:

⇢(t+ dt) =

Z
dyt}ostM̂R(yt)⇢(t)M̂

†
R(yt) (3.8)

= ⇢(t) +D[ĉ]⇢(t)dt+
✓
1

4
ĉ
†
ĉ⇢(t)ĉ†ĉ+

1

2
ĉ
2
⇢(t)(ĉ†)2

◆
dt2 +O(dt3)

We again show that M̂R satisfies the completeness relation and the Lindblad master

equation only to the first order in dt.

In Ref. [1], the map was also generalised to multiple channels with the system’s
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Hamiltonian Ĥ, which is given by

M̂R = 1̂�
✓
iĤ + 1

2

X

j

V̂
†
j
V̂j +

1
2

X

r

L̂
†
r
L̂r

◆
dt

+
X

r

p
⌘rL̂rytdt+

X

r,s

p
⌘r⌘s

2 L̂rL̂s(yt,ryt,sdt
2 � �r,sdt), (3.9)

where the state update is given by

⇢(t+ dt) =
M̂R⇢(t)M̂

†
R +

P
j
V̂j⇢(t)V̂

†
j
dt+

P
r
(1� ⌘r)L̂r⇢(t)L̂†

r
dt

Tr
h
M̂R⇢(t)M̂

†
R +

P
j
V̂j⇢(t)V̂

†
j
dt+

P
r
(1� ⌘r)L̂r⇢(t)L̂

†
rdt

i ,(3.10)

noting that L̂r and V̂j are Lindblad operators for measured and dephasing channels,

respectively.

3.3 Guevara-Wiseman Approach

This approach was proposed by Guevara and Wiseman in [2]. They proposed

the complete positivity map for quantum trajectories with jumps and diffusive mea-

surements and used it for quantum state smoothing. They started with the idea to

improve the completeness relation of the Itô measurement operator in Eq. (3.2) to

second order in dt. Therefore, they intuitively proposed the measurement operator

M̂G(yt) = 1̂ +
�
ytĉ�

1

2
ĉ
†
ĉ
�
dt� 1

8
(ĉ†ĉ)2dt2, (3.11)

by adding the extra term from the Itô map in Eq. (3.1).

We then perform the calculation of the completeness relation and the Lindblad

master equation as follows.

• Completeness relation:

Z
dyt}ostM̂

†
G(yt)M̂G(yt) = 1̂ +O(dt3) (3.12)
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• Lindblad master equation:

⇢(t+ dt) =

Z
dyt}ostM̂G(yt)⇢(t)M̂

†
G(yt) (3.13)

= ⇢(t) +D[ĉ]⇢(t)dt+
1

4
D[ĉ†ĉ]⇢(t)dt2 +O(dt3)

It is clear that the completeness relation is satisfied to second order in dt. However,

the Lindblad master equation is correct only to the first order in dt. It is still not

enough for our criterions. Therefore, in the next chapter, we will propose a new

measurement operator that can satisfy the completeness relation and the Lindblad

master equation both to the order dt2.
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Chapter 4

Constructing High-order Completely

Positive Map

We here derive a suitable measurement operator from the basic assumption that

a quantum system is interacting with an environment. We consider a primary system

described by ⇢, coupled to a bosonic bath (which plays the role of the environment).

This chapter is organised as follows. We first derive the high-order completely positive

map for a simple case, which is the map for a single Lindblad operator, no system’s

Hamiltonian, and no extra dephasing. In Section 4.2, we derive the map for a more

general case, we add the system’s Hamiltonain with multiple extra dephasing chan-

nels. Finally, we end this chapter with the examples for qubit z-measurement and

fluorescence measurement.

4.1 Measurement Operator for One Channel

In all our examples below the primary system is a qubit, but the derivation should

apply for any quantum system ⇢. Considering the interaction frame and the rotating–

wave approximation [7, 14], the coupling unitary operator representing an infinitesi-

mal evolution in Heisenberg picture is given by,

Û(t+ dt, t) = exp
h
ĉ dB̂† � ĉ

†dB̂
i
, (4.1)
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Order Hermite polynomials

H0(y) 1

H1(y) y

H2(y) y
2 � 1

H3(y) y
3 � 3y

H4(y) y
4 � 6y2 + 3

Table 4.1: This table shows the fist four orders of the Hermite polynomials.

which is from the coupling Hamiltonian V̂IF = i(ĉ dB̂†� ĉ
†dB̂), where ĉ is the system’s

Lindblad operator describing the coupling to the bath. dB̂ is an infinitesimal operator

for the bath excitation satisfying a commutator relationship [dB̂, dB̂†] = dt.

Assuming that the bath initial state is in a vacuum state |0ib and, after the

interaction with the system via the unitary operator Eq. (4.1), the state is projected

onto a homodyne eigenstate |yti corresponding to a detector readout yt, we can derive

a measurement operator from

b hyt|Û1 |0ib =b hyt|
⇣
1̂ + ĉ dB̂ � 1

2 ĉ
†
ĉ dB̂dB̂† + 1

2 ĉ
2(dB̂†)2

⌘
|0ib, (4.2)

where Û1 is denoted as the expansion of the unitary operator Û(t + dt, t) up to

O(dt, dB̂2), ignoring terms with dB̂ to its right as they give zero when operating on the

vacuum state. For the diffusive measurement, it is sufficient to consider a quadrature

measurement of the bath state (which is bosonic), where the bath eigenstates are

the quadrature states yt 2 {I,Q}. We use the fact that dB̂† creates an excitation

in the bath dB̂†|nib =
p

(n+ 1)dt|n + 1ib with a factor of
p
dt, and the normalised

wavefunctions of a Harmonic oscillator given in terms of Hermite polynomials Hn for

the projection of number states (see Table 4.1)

bhyt|nib = (1/
p
2nn!)(↵/⇡)1/4 exp

�
�↵y

2
/2
�
Hn(

p
↵ yt), (4.3)

where ↵ = dt/2. We then obtain the measurement operator, which perfectly agrees
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with the Rouchon-Ralph measurement operator in Eq. (3.6), for a generalised homo-

dyne measurement to order of O(dt, dB̂2) as,

M̂R = }(yt)
�
1̂� 1

2 ĉ
†
ĉ dt+ ytĉ dt+

1
2 ĉ

2(y2
t
dt2 � dt) , (4.4)

where }(yt) = (dt/2⇡)1/4 exp(�y
2
t
dt/4).

As shown in Section 3.2. the Rouchon-Ralph measurement operator does not

meet our criterions, especially, the terms from the completeness relation, so that we

need to find some extra terms to cancel them. We therefore consider the high-order

expansion of the unitary operator Û(t+ dt, t). We again ignore the expansion terms

with dB̂ to its right. Here, we show the first four orders of the argument’s expansion.

We can start by performing the Taylor expansion of Eq. (4.1) up to O(dt2, dB̂4), and

defining Û(t+ dt, t) ⌘ exp[↵̂], giving

e
↵̂ ⇡ 1̂ + ↵̂ + 1

2 ↵̂
2 + 1

6 ↵̂
3 + 1

24 ↵̂
4
, (4.5)

where we have used ↵̂ = ĉdB̂† � ĉ
†dB̂. Applying the initial and final states of the

bath, we obtain

b hyt| ↵̂0|0ib = 1̂,

b hyt| ↵̂1|0ib = b hyt| ĉdB̂†|0ib = ytĉdt,

b hyt| ↵̂2|0ib = b hyt| ĉ2(dB̂†)2 � ĉ
†
ĉdB̂dB̂†|0ib =

⇥
ĉ
2(y2

t
dt� 1)� ĉ

†
ĉ
⇤
dt,

b hyt| ↵̂3|0ib = b hyt| ĉ3(dB̂†)3 � ĉ
†
ĉ
2dB̂(dB̂†)2 � ĉĉ

†
ĉdB̂†dB̂dB̂†|0ib

=
⇥
ĉ
3(y3

t
dt� 3yt)� 2ytĉ

†
ĉ
2 � ytĉĉ

†
ĉ
⇤
dt2,

b hyt| ↵̂4|0ib = b hyt| ĉ4(dB̂†)4 � ĉ
†
ĉ
3dB̂(dB̂†)3 � ĉĉ

†
ĉ
2dB̂†dB̂(dB̂†)2

�ĉ
2
ĉ
†
ĉ(dB̂†)2dB̂dB̂† + (ĉ†ĉ)2(dB̂dB̂†)2 + (ĉ†)2ĉ2dB̂2(dB̂†)2|0ib

=
⇥
ĉ
4(y4

t
dt2 � 6ytdt+ 3)� 3ĉ†ĉ3(y2

t
dt� 1)� 2ĉĉ†ĉ2(y2

t
dt� 1)

�3ĉ2ĉ†ĉ3(y2
t
dt� 1) + (ĉ†ĉ)2 + 2(ĉ†)ĉ2

⇤
dt2, (4.6)

where we have left the ostensible probability }ost =
q

dt
2⇡ exp[�y

2
t
dt/4] outside the
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calculation.

We remark that in the first three orders of the ↵̂ expansion contribute to the

Rouchon-Ralph approach in Eq. (3.6). Here, we can construct the measurement

operator by keeping all terms of the expansion. However, when calculating the com-

pleteness relation some terms will be vanished by themselves, that is because

Z
}ost(y

4
t
dt4 � 3y2

t
dt3)dyt = 0, (4.7)

Z
}ost(y

4
t
dt4 � 6ytdt

3 + 3dt2)dyt = 0, (4.8)
Z

}ost(y
2
t
dt3 � dt2)dyt = 0, (4.9)

and any terms with higher orders than O(dt2, dB̂4) also vanish. Therefore, what left

are terms from ↵̂
3: (a) ytĉ

†
ĉ
2dt2 and (b) ytĉĉ

†
ĉdt2, and from ↵̂

4: (c) (ĉ†ĉ)2dt2 and

(d) (ĉ†)2ĉ2dt2. We can show that the (d) term is not needed when calculating the

unconditioned state update. Finally, we select the (a)-(c) terms with the suitable

coefficients.

We select the term 1/8(ĉ†ĉ)2(dB̂dB̂†)2 with coefficient 1/8, because this coef-

ficient can give back the unconditioned state update agreeing with the Lindblad

master equation in Eq. (2.14). The two more terms are �1/8ĉ†ĉ2dB̂(dB̂†)2 and

�1/4ĉĉ†ĉdB̂†dB̂dB̂†, where the coefficients are chosen as a result of the first term.

Now, we can construct the measurement operator from

b hyt|Û2 |0ib = b hyt| Û1 +
1
8(ĉ

†
ĉ)2(dB̂dB̂†)2 � 1

8 ĉ
†
ĉ
2dB̂(dB̂†)2 � 1

4 ĉĉ
†
ĉdB̂†dB̂dB̂†|0ib,

(4.10)

where Û2 is defined as the part of the unitary operator that has the high-order ex-

pansion of Û(t + dt, t) up to O(dt2, dB̂4). Therefore, the measurement operator is

given by

M̂W(yt) = 1̂� 1
2(ĉ

2 + ĉ
†
ĉ)dt+ 1

8

�
ĉ
†
ĉ
�2
dt2 +

⇥
ĉdt� 1

4

�
ĉ
†
ĉ
2 + ĉĉ

†
ĉ
�
dt2

⇤
yt +

1
2 ĉ

2dt2y2
t
.

(4.11)
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Approach Completeness relation O(dt2) of the state update

M̂I 1 +O(dt2) 1
4 ĉ

†
ĉ⇢(t)ĉ†ĉ

M̂R 1 +O(dt2) 1
4 ĉ

†
ĉ⇢(t)ĉ†ĉ+ 1

2 ĉ
2
⇢(t)(ĉ†)2

M̂G 1 +O(dt3) 1
4D[ĉ†ĉ]⇢(t)

M̂W 1 +O(dt3) 1
2D[ĉ]

⇥
D[ĉ]⇢(t)

⇤

Table 4.2: We show the comparison among 4 different approaches with our crite-
rions (completeness relation and agreement with the Lindblad master equation) in
the scenario of the system’s Hamiltonian Ĥ = 0 and a single Lindblad operator ĉ.
Noting that we show merely the second order in dt of the unconditioned system evo-
lution since all approaches are correct to the first order in dt comparing with the
unconditioned Lindblad master equation.

Noting that the new map yields three extra terms of M̂R which are the forms after

projecting onto the bath eigenstate with Û2(t+ dt, t).

We perform the calculation of the completeness relation and the unconditioned

state update as follows.

• Completeness relation:

Z
dyt}ostM̂

†
W(yt)M̂W(yt) = 1̂ +O(dt3) (4.12)

• Lindblad master equation:

⇢(t+ dt) =

Z
dyt}ostM̂W(yt)⇢(t)M̂

†
W(yt) (4.13)

= ⇢(t) +D[ĉ]⇢(t)dt+ 1
2D[ĉ]

⇥
D[ĉ]⇢(t)

⇤
dt2 +O(dt3)

It is obvious that this measurement operator perfectly satisfies our criterions. The

map satisfies the completeness relation to second order in dt and agree with the

Lindblad master equation Eq. (2.14) to second order in dt. We show the comparison

among four different approaches in Table 4.2.
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4.2 Measurement Operator for Multiple Channels

with the System’s Hamiltonian

So far, we have derived the measurement operator for one channel without the

system’s Hamiltonian. To generalise such the measurement operator, we add the

system’s Hamiltonian Ĥ to the unitary evolution, giving

Û
Ĥ
(t+ dt, t) = exp

h
�iĤdt+ ĉ dB̂† � ĉ

†dB̂
i
. (4.14)

We can derive the high-order completely positive measurement operator with the

unitary evolution in the similar way as we have done in the previous section. Let us

consider Û
Ĥ
(t+ dt, t) in Eq. (4.14), we can expand the arguments and keep suitable

forms to meet our criterions as

b hyt|ÛĤ2
|0ib = b hyt| Û2 � iĤdt� 1

2Ĥ
2dt2 � i

2dt(Ĥĉ+ ĉĤ)dB̂†

+ i

4dt(ĉ
†
ĉĤ + Ĥĉ

†
ĉ)dB̂dB̂†|0ib,

(4.15)

where Û
Ĥ2

denotes the selected suitable forms of the unitary evolution expansion up

to O(dt2, dB̂4). We then obtain the full evolution of the measurement operator for a

single perfectly measured channel,

M̂
⇤
W(yt) = 1̂� iĤdt� 1

2(ĉ
2 + ĉ

†
ĉ)dt+


1
8

�
ĉ
†
ĉ
�2

+ i

4

�
ĉ
†
ĉĤ + Ĥĉ

†
ĉ
�
� 1

2Ĥ
2

�
dt2

+

✓
ĉdt�

⇥
1
4

�
ĉ
†
ĉ
2 + ĉĉ

†
ĉ
�
+ i

2

�
ĉĤ + Ĥĉ

�⇤
dt2

◆
yt +

1
2 ĉ

2dt2y2
t
. (4.16)

Here, we can see that the unitary parts will finally become terms from L0 + L2
0 itself

and from the crossed term with the decoherence operator ĉ as L0[D] +D[L0].

Let us consider the measurement operator with multiple channels. We can de-

fine a set of decoherence operators with N = 2n +m operators. The set includes n

operators for measured channels i.e., L̂⌫ 2 {p⌘1ĉ1, ...,
p
⌘nĉn}, m + n operators for

unmeasured channels i.e., V̂⌫̃ 2 {V̂1, ..., V̂m,
p
1� ⌘1ĉ1, ...,

p
1� ⌘nĉn}, ⌘r is the mea-

46



surement efficiencies. Here, the generalised measurement operator can be written as

M̂ =
P

N

k 6=j
M̂(V̂k)M̂(V̂j), giving

M̂
?

W(yt) =1̂ +
X

k2µ

✓
� 1

2 V̂
†
k
V̂kdt+ ykV̂kdt+

1
2 V̂

2
k
[y2

k
dt2 � dt] + 1

8

�
V̂

†
k
V̂k

�2
dt2

� 1
4yk

⇥
V̂

†
k
V̂

2
k
+ V̂kV̂

†
k
V̂k

⇤
dt2 + i

4{V̂
†
k
V̂k, Ĥ}dt2 � i

2yk{V̂k, Ĥ}dt2
◆

+
X

j 6=k2µ

✓
1
8 V̂

†
j
V̂jV̂

†
k
V̂k � 1

4 V̂
†
j
V̂jV̂kyk � 1

4 V̂jV̂
†
k
V̂kyj +

1p
2
V̂jV̂kyjyk

◆
dt2

� iĤdt� 1
2Ĥ

2dt2, (4.17)

where yk,j is the measurement readout for the channel k, j. For unmeasured channels,

one cannot obtain the measurement readout y⌫̃ , we therefore integrate over possible

readout, which gives back an average evolution.

In this thesis, we consider a single imperfectly measured channel (i.e., one mea-

sured channel L̂ and the set of decoherence operators becomes {p⌘L̂, ⌫̃}). Finally,

the full dynamics measurement operator is given by,

M̂
?

W(yt) =1̂� iĤdt� ⌘

2 L̂
†
L̂dt+

p
⌘ yt L̂dt+

⌘

2 L̂
2[y2

t
dt2 � dt]� 1

2Ĥ
2dt2 + i

4⌘{L̂
†
L̂, Ĥ}dt2

� i

2yt
p
⌘{L̂, Ĥ}dt2 + 1

8⌘
2
�
L̂
†
L̂
�2
dt2 � 1

4⌘
3/2

yt

⇥
L̂
†
L̂
2 + L̂L̂

†
L̂
⇤
dt2

� yt

X

j2⌫̃

✓
p
⌘

4

⇥
V̂

†
j
V̂jL̂+ L̂V̂

†
j
V̂j

⇤
dt2 � �

q
⌘

2

⇥
V̂jL̂+ L̂V̂j

⇤
dt3/2

◆
, (4.18)

where we have set ĉ =
p
⌘L̂ for the measurement channel with the efficiency ⌘. We

define � as � = 0 except �2 = 1. The system state update can be described by

⇢(t+ dt) =
M̂

?

W(yt)⇢(t)M̂?

W(yt)† + D[V̂j]⇢(t)

Tr
n
M̂

?

W(yt)⇢(t)M̂?

W(yt)† + D[V̂j]⇢(t)
o , (4.19)
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where D[{V̂j}]• is defined as

D[{V̂j}]• =

✓X

j2⌫̃

Dj • dt+ 1
2

⇢X

j2⌫̃

⇥
L0

�
Dj •

�
+Dj

�
L0 •

�
+Dj

�
Dj •

�⇤

+ 1
4

NX

k 6=j

(V̂ †
k
V̂kV̂

†
j
V̂j, •)� 1

2

NX

k=1
k 6=j

X

j2⌫̃

⇥
(V̂ †

k
V̂kV̂j, •V̂ †

j
) + (V̂jV̂

†
k
V̂k, •V̂ †

j
)
⇤

+ 1
2

NX

k 6=j

(V̂ †
k
V̂k, •V̂ †

j
V̂j) +

X

k,j2⌫̃
k 6=j

(V̂kV̂j, •V̂ †
j
V̂

†
k
)

�
dt2

◆
. (4.20)

Here L0 is the unitary part of the Lindblad, L0[•] = �i[Ĥ, •]. We have defined the

decoherence channel Di ⌘ D[V̂i], and (Â, B̂) = ÂB̂ + B̂
†
Â

†.

By construction, this generalised measurement operator satisfies the completeness

relation to O(dt2) and remains the agreement to the unconditioned state update

(via integrating over all measurement readouts yt) comparing to the Lindblad master

equation (with Ĥ) to O(dt2) derived by Steinbach et al. in Ref.[16].

4.3 Examples

This section we will apply the high-order completely positive map Eq. (4.16) to

two examples of the qubit measurement. One is for the Hermitian z-measurement

and another is for a measurement of a qubit’s fluorescence.

4.3.1 Qubit z-measurement

Let us consider a qubit continuously measured by a detector that is coupled to

the qubit via �̂z observable. This idea has been studied first time via quantum

dots experiments [3–6, 31, 32], where a single electron can be in one of the double

quantum dots (dot a and b). The current signal from a nearby quantum point contact

is continuously detected depending on whether the location of the electron is in dot

a or b. The Hamiltonian evolution of this qubit is Ĥ = ✏

2 �̂z � �
2 �̂x where ✏ is an

energy asymmetry between two dot and � is a tunnelling rate between two dots. The
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Lindblad operator for this case is ĉ / �̂z. We can construct the high-order completely

positive measurement operator as (for perfect measurement, i.e., ⌘ = 1)

M̂yt = 1̂� �1̂dt+ �2

8 1̂dt
2 + �

2 1̂dt
2
y
2
t
+
⇥
�1/2

�̂zdt� 1
4�

3/2
�
2�̂z

�
dt2

⇤
yt

� iĤdt+ 1
2

⇥
i�Ĥ � Ĥ

2 + i�1/2(�̂zĤ + Ĥ�̂z)yt
⇤
dt2, (4.21)

where � = 1/4⌧ , ⌧ is the characteristic measurement time, and yt is the diffusive mea-

surement readout. Noting that this measurement operator agrees with the expansion

of the quantum Bayesian approach [3–5] to O(dt2) defined as

M̂z =

✓
dt
2⇡⌧

◆1/4

exp


�dt(

p
⌧yt � �̂z)2

4⌧

�
, (4.22)

where the unitary evolution can be included by applying Û = e
�iĤdt separately (see

more in Appendix B).

However, one can ask whether there will be errors coming from non-commuting

operation in the quantum Bayesian approach, since this measurement operator itself

does not include the unitary evolution part, and both operations do not commute.

It justifies that this particular example can be simplified by using our measurement

operator.

4.3.2 Measurement of qubit’s fluorescence

Quantum fluorescence, especially for a qubit system, examines the energy relax-

ation or the transition of a quantum state. A transition from high energy levels to

lower energy levels will result in an emission of photons at their transition modes.

Let us consider a qubit system, which has two states, the ground state |gi, and the

excited state |ei. The transition of a qubit from the exited state to the ground state

will yield a single photon emission. Therefore, the measurement readout could be dis-

crete numbers, or random real numbers, depending on the detection of photons. The

fluorescence measurement can be done by a heterodyne measurement of two quadra-

tures of the fluorescence mode, which results in a diffusive continuous measurement
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record [7, 8, 14, 22].

The transition of a qubit state can be described by a Lindblad operator propor-

tional to the lowering operator ĉ / �̂� = |gi he|. We therefore construct the high-order

completely positive measurement operator as,

M̂yt = 1̂�iĤdt� �

2 (�̂
2
�+�̂+�̂�)dt+

�
2

8

�
�̂+�̂�

�2
dt2+ �

2 �̂
2
�dt

2
y
2
t
� i�

1/2

2 (�̂�Ĥ+Ĥ�̂�)ytdt
2

+
⇥
i�

4 (�̂+�̂�, Ĥ)� 1
2Ĥ

2
⇤
dt2 +

⇥
�
1/2

�̂�dt� 1
4�

3/2
�
�̂+�̂

2
� + �̂��̂+�̂�

�
dt2

⇤
yt, (4.23)

where � is a coupling rate. The rising operator is defined as �̂+ = �̂
†
� = |ei hg|. yt is

the measurement readout for diffusive quantum fluorescence measurements.
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Chapter 5

Numerical Simulations for qubit

trajectories

In this section, we aim to make comparison among the approaches introduced in

Chapters 3 and 4 by comparing trajectories numerically generated with fine and coarse

time resolutions, and checking their agreement with the Lindblad average evolution.

We consider the superconducting qubit experiment [20], where the qubit is measured

in z basis, as a model for our simulation. We use the values of parameters extracted

from the experiment, including the time resolution dt = 0.016 µs, and analyse errors

that can occur from different approaches mentioned above. We begin the chapter by

introducing the qubit example and its relevant experiment. We then shows numerical

results. The results we show in this section are going to be published in Ref.[33].

5.1 Superconducting Qubit z-measurement

We follow the experimental detail as in Ref. [20], which is a continuous measure-

ment of �̂z observable using the homodyne detection. The experiment consists of the

Transmon qubit circuit dispersively coupled to the microwave beams as in Figure 5-

1-a. The state of the input microwave beam can be represented by the phase space in

Figure 5-1-b. The beam interacts with the qubit and then is amplified by the LJPA.

If the state is |0i (or |1i) (Figure 5-1-c), the I-quadrature of the beam will get shifted
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Figure 5-1: This figure displays a brief description of the superconducting qubit
experiment. [20]

down (or up) (Figure 5-1-d). Finally, with the homodyne measurement (applied by

LJPA) we can transform the detected signal (Figure 5-1-e) to a measurement record

and then calculate the quantum trajectories for the transmon qubit. The qubit tra-

jectories for z-measurement was discussed in Section 4.3.1. Here, we will implement

four approaches presented in Chapters 3 and 4, using M̂I(yt) in Eq. (3.4), M̂R(yt) in

Eq. (3.9), M̂?

W(yt) in Eq. (4.18), and M̂B(yt) in Eq. (4.22).

5.2 Simulations

We implement the four approaches for qubit trajectories under the continuous z-

measurement. in this thesis, we consider the driven qubit with the Hamiltonian Ĥ =

⌦/2�̂y, where ⌦ is the Rabi frequency. The Lindblad operators are L̂ = 1/
p
4⌘⌧ �̂z and

V̂ =
p
(1� ⌘)/(4⌘⌧)�̂z, describing the measured and unmeasured channels from an

imperfect measurement, respectively. We initialise the qubit state ⇢(t0) as z ⌘ Tr[⇢�̂z]

and x ⌘ Tr[⇢�̂x], where x and z are the Bloch sphere coordinates. Therefore, the Itô
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SME Eq. (2.24) gives

x(t+ dt) = x(t)� �x(t) dt+ ⌦ z(t) dt� x(t) z(t)
�
y(t)� z(t)

�
dt/⌧, (5.1)

z(t+ dt) = z(t)� ⌦ x(t) dt+ (1� z(t)2)
�
y(t)� z(t)

�
dt/⌧, (5.2)

where � = 1
4⌘⌧ . Noting that there is no y dynamics, since we only consider z-

measurement and the qubit rotates about the y-axis in the x-z plane. Here, the

measurement record is given by

y(t)dt =
1p
⌧
z(t)dt+ dW (t). (5.3)

Averaging the Itô SME will result in the last terms in of Eqs. (5.1)-(5.2) vanished,

giving back the usual Lindblad evolution. We can solve for the average solution as,

z(t) = �2x0⌦

�
e
� 1

2�t sin

✓
�t

2

◆
(5.4)

x(t) =
x0

�
e
� 1

2�t

"
� cos

✓
�t

2

◆
� � sin

✓
�t

2

◆#
, (5.5)

where � � 0 =
p
4⌦2 � �2.

In this thesis, we aim to make a comparison among all approaches. Therefore,

for a fair comparison, we need to define true quantum trajectories as our benchmark.

Such trajectories can be generated using a very small time step dt (in this thesis, we

use dt = 4 ⇥ 10�4
µs), for which, all approaches give the same results. We generate

true trajectories using the Itô approach as in Eq. (2.24), where the Wiener increment

dW (t) are generated independently with zero mean and hdW 2i = dt. We can then

construct measurement records using Eq. (5.3).

However, in real measurements, too small time step is not possible and it could

violate the Markov assumption. In the superconducting transmon qubit experiment,

the measurement time step was 0.016 µs [17, 20] . Therefore, we will use dt, which

is dt = 0.016 µs for our analysis. We then implement the coarse graining method

to rescale the true measurement records from the time step dt = 4 ⇥ 10�4
µs to
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dt = 0.016 µs, using

ycg(�t) =
dt

�t

�tX

t0=�t�dt

y(t0), (5.6)

where ycg is the coarse-grained record. in this thesis, the comparison will be done

via the trace distance, comparing the trajectories generated from the four approaches

with true trajectories and the Lindblad evolution. For a qubit system, the trace

distance is defined by [10],

D(⇢a, ⇢b) =
1

2
|~ra � ~rb|, (5.7)

where ~ra and ~rb are vectors on the Bloch sphere for the qubit state ⇢a and ⇢b, respec-

tively. The density matrix of a qubit is written as ⇢ = 1/2(1̂ + ~r · ~̂�), where ~̂� are a

vector of Pauli matrices defined as ~̂� = (�̂x, �̂y, �̂z) and ~r = (x, y, z).

5.3 Results and Discussions

The qubit trajectories are simulated from t0 = 0 to Tf = 1.44 µs, where the initial

state is ⇢(t0) =
1
2(1̂ + �̂x), i.e., ~r0 = (x0, y0, z0) = (1, 0, 0).

5.3.1 True Trajectory and Measurement Record Simulation

We first generate N = 1.5⇥ 104 realisations of the Wiener increments with 3,600

time steps using dt = 4 ⇥ 10�4
µs, which are then used to simulate N true qubit

trajectories. We check the average of the true trajectories and find that the trace

distance comparing with the numerical Lindblad evolution is in order of O(10�3)

as shown in Figure 5-2. The true measurement records are then constructed via

Eq. (5.3).
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Figure 5-2: This figure displays the averaged generated quantum trajectories com-
paring with the numerical Lindblad evolution. The parameters are ⌦/2⇡ =
1.08 MHz, ⌧ = 0.315271 µs, and ⌘ = 0.411932

5.3.2 Coarse Graining Measurement Records for Quantum Tra-

jectories

In this step, we implement the coarse graining method to rescale the true measure-

ment records from Section 5.3.1. This method will change them from 3,600 time steps

to 90 time steps per trajectory, corresponding to changing the size of the time step

from dt to dt. We then implement the four approaches, using the maps M̂I, M̂R, M̂
?

W

and M̂B, to process quantum trajectories, for all N trajectories, each having 91 time

steps (with the initial point x0, z0).

5.3.3 Trace Distance for Individual Trajectories

We then analyse the generated trajectories by calculating the trace distance from

the true trajectories with the relevant 90 time steps. The individual trajectories are

shown in Figure 5-3. The qubit evolution is stochastic throughout its entire time of
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Figure 5-3: The comparison of individual trajectories calculated from the quantum
Bayesian (Bay), the Euler-Milstein (Rou), the high-order completely positive map
(WWC), and the Itô map (Ito) using the coarse-grained measurement records. Each
record has 91 time steps with �t = 0.016 µs.

interest and all approaches yield the similar trend, though not exactly the same. We

also show the distribution of the trace distance from individual trajectories over N

relevant realisations for all four approaches in Figure 5-4, with the average values of

the trace distance. The means of the histograms are D̄ = 0.017, 0.013, 0.010, and

0.019, for M̂I, M̂R, M̂
?

W and M̂B, respectively.

5.3.4 Trace Distance for Averaged Trajectories

Finally, we calculate the average trajectories from the N individual trajectories.

As shown in Figure 5-6, it is clear that x and z decay to zero as time evolves longer

and all approaches give the averages close to the Lindblad solution. We calculate the

trace distance of the averaged trajectory from the four approaches comparing with the

numerical Lindblad evolution (Eq. (5.4)). The calculations yield the average distances

0.008, 0.005, 0.002, and 0.004, for M̂I, M̂R, M̂
?

W and M̂B, respectively. We also show
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Figure 5-4: This figure displays the distribution of the trace distance comparing with
the true trajectories for all approaches.

the trace distance of averaged trajectories changing in time in Figure 5-6. This is

clear that the high-order completely positive map is the most accurate method, and

the Itô approach is the least accurate one.
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Figure 5-5: This figure displays the plot of averaged trajectory of each approach from
N = 1.5⇥ 104 individual trajectories.

Figure 5-6: This figure displays the changes in time of the trace distance between the
averaged trajectory and the numerical Lindblad evolution.
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Chapter 6

Conclusion

In this thesis, we discussed about the open quantum system and the continuous

quantum measurement, where the unconditioned evolution and the conditioned evo-

lution (quantum trajectory) were obtained. We investigated the concerned problem

about the time resolution dt of the measurement operator (map), especially, the error

from the completeness relation and the comparison to the Lindblad master equa-

tion. The finite time scale can lead to errors in quantum trajectory simulations. We

reviewed the four relevant approaches, which have been used to simulate quantum

trajectories, in particular, for diffusive continuous measurements. We also performed

the calculation of the completeness relation and the unconditioned state update. This

is to compare among the four approaches and show the agreement to the expansion

of the Lindblad master equation.

Given the existing approaches and their properties, we then proposed a better

method, the high-order completely positive map for quantum diffusive weak mea-

surements. The derivation was based on a quantum system coupled to a bosonic

bath. We first derived such map in the particular case, where the system’s Hamilto-

nian is Ĥ = 0 and with a single Lindblad operator. We showed that our method can

reproduce exactly the Rouchon-Ralph measurement operator, which was obtained

from a different intuition (using the classical Euler-Milstein technique). Moreover,

the analytical calculation showed that the high-order completely positive map is the

most accuracy approach comparing to other approaches. We showed that our mea-
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surement operator satisfies the completeness relation and agrees with the Lindblad

master equation expansion to the second order in dt. We have also generalised the

map to include the system’s Hamiltonian Ĥ and with multiple decoherence channels,

separating the measured and the unmeasured channels. In Section 4.3, we showed

the two qubit examples, which are the qubit z-measurement, and the measurement

of qubit’s fluorescence, and derived the high-order completely positive map for both

cases. For the qubit z-measurement, we showed that our proposed measurement op-

erator agrees with the expansion of quantum Bayesian approach up to the second

order in dt.

In Chapter 5, we made a comparison among four approaches (the Itô map, Rouchon-

Ralph approach, quantum Bayesian approach, and our proposed map). We simulated

the true measurement records and the true trajectories for N = 1.5⇥ 104, using the

Itô approach for a really small time step dt as a benchmark for the comparison.

We implemented the coarse graining method to rescale the measurement records to

the larger time step dt. Then, we used the coarse records to calculate the quantum

trajectories using the four different maps. We investigated the trace distance compar-

ing the generated individual trajectories with the true trajectories and the numerical

Lindblad solution. The numerical calculation results showed that our high-order com-

pletely positive map M̂W is the most accurate and precise method. Moreover, we can

also confirm with some confidence that the time step dt = 0.016 µs used in [20] is a

good time resolution, since the least accurate approach, can the Itô approach, still

give reasonably small errors.
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Appendix A

Euler-Milstein Scheme

In this section, we will show the derivation of the higher order in dW of the classical

stochastic equation. The classical stochastic differential equation can typically be

described by

d~x = f(~x(t), t)dt+ L(~x(t), t) ~dW, (A.1)

noting that L is an arbitrary matrix and dW is the Wiener increment from stochastic

process. Let us integrate over all Eq. (A.1), giving

~x(t) = ~x(t0) +

Z
t

t0

f(~x(⌧), ⌧)d⌧ +

Z
t

t0

L(~x(⌧), ⌧)d ~W (⌧). (A.2)

Here, we will solve to find the function f(~x(⌧), ⌧) and L(~x(⌧), ⌧). We then apply the

Itô’s lemma, giving

df(~x(t), t) =
@f(~x(t), t)

@t
dt+

X

u

@f(~x(t), t)

@xu

dt+
X

u

@f(~x(t), t)

@xu

[L(~x(t), t)d ~W (t)]udt

+
1

2

X

uv

@
2
f(~x(t), t)

@xu@xv

[L(~x(t), t)QL|(~x(t), t)]uvdt, (A.3)
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dL(~x(t), t) =
@L(~x(t), t)

@t
dt+

X

u

@L(~x(t), t)

@xu

dt+
X

u

@L(~x(t), t)

@xu

[fu(~x(t), t)d ~W (t)]udt

+
1

2

X

uv

@
2L(~x(t), t)

@xu@xv

[L(~x(t), t)QL|(~x(t), t)]uvdt. (A.4)

Let us define the superoperator Lt as Lt ⌘ @

@t
+
P

u

@

@xu
fu +

1
2

P
uv

@
2

@xu@xv
[LQL|] and

Lw,v ⌘
P

u

@

@xu
Luv, giving

f(~x(t), t) = f(~x(t0), t0) +

Z
t

t0

Ltf(~x(⌧), ⌧)d⌧ +
X

v

Z
t

t0

Lw,tf(~x(⌧), ⌧)d ~Wv(⌧),(A.5)

L(~x(t), t) = L(~x(t0), t0) +

Z
t

t0

Ltf(~x(⌧), ⌧)d⌧ +
X

v

Z
t

t0

Lw,tf(~x(⌧), ⌧)d ~Wv(⌧).(A.6)

Here, we substitute Eqs. (A.5)-(A.6) to Eq. (A.2), giving

~x(t) = ~x(t0)+f(~x(t0), t0)(t�t0)+L(~x(t0), t0)(~w(t)�~w(t0))+

ZZ
· · · d⌧d⌧ 0+

ZZ
· · · dWvd⌧

+

ZZ
· · · d⌧dWv +

X

v

Z
t

t0

Z
⌧

t0

Lw,vL(~x(⌧), ⌧)dWvd ~W. (A.7)

We can ignore the high order terms in dt, then

~x(t) = ~x(t0) + f(~x(t0), t0)(t� t0) + L(~x(t0), t0)( ~W (t)� ~W (t0))

+
X

v

Z
t

t0

Z
⌧

t0

Lw,vL(~x(⌧), ⌧)dWvd ~W. (A.8)

Let us consider the last term of Eq. (A.8) (setting dWvd ~W ⌘ ��v,k), then at time tk

X

v

Lw,vL(~x(tk), tk)��v,k =
X

v

X

u

@Luv

@xu

(~x(tk), tk)Luv(~x(tk), tk)��v,k. (A.9)

We consider the particular case where ~x is a vector of 1⇥m () u = 1),

L(~x(t), t)� ~W =
mX

r=1

Lr(x(t), t)dWr. (A.10)
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Then,

X

v

X

u

@Luv

@xu

(~x(tk), tk)Luv(~x(tk), tk)��v,k =
X

v,r

@Lr

@x
Lv��v,r, (A.11)

) ~x(t) =~x(t0) + f(~x(t0), t0)(t� t0) + L(~x(t0), t0)( ~W (t)� ~W (t0)) (A.12)

+
mX

v,r

@Lr

@x
Lv

Z
t

t0

Z
⌧

t0

��v,r.

Now, in the scenario that v = r, we can evaluate the integral in Eq. (A.12). We

implementing the Itô’s lemma by letting z = x
2
, µ = 0, � = 1, x0 = 0,

dx = ���*0
µdt+ �dW

dx = dW ! x = W

) dx2 = dW 2 =
@z

@x
dx+

1

2

@
2
z

@x2
dx2 (A.13)

= 2xdx+ dx2

= 2WdW + dW 2

) dW 2 = 2WdW + dt, (A.14)

giving

Z
tk+1

tk

Z
⌧

tk

dW (⌧ 0)dW (⌧) =

Z
tk+1

tk

(W (⌧)�W (tk))dW (⌧) (A.15)

=
�W

2 � dt
2

. (A.16)

and where v 6= r, let z = xrxv with µt = 0, � = 1, xr(0) = xv(0) = 0, we have,

dz =
@z

@xr,v

dxr,v +
1

2

@
2
z

@xr@xv

⇠⇠⇠⇠⇠:0(�Wr�Wv = �r,vdt)
dxrdxv

dz = xrdxv + xvdxr

d(WrWv) = WrdWv +WvdWr. (A.17)
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Now, let us consider the last term of Eq. (A.12), we set @Lr
@x

Lv = @Lv
@x

Lr and then

rearrange the such equations in this following form,

X

r,v

ArBv =
X

r=v

ArBs +
X

r<v

(ArBs +BsAr). (A.18)

Then we have,

mX

v,r

@Lr(xn)

@x
Lv(xn)

ZZ
dWr(⌧)dWs(⌧) =

mX

r

@Lr(xn)

@x
Lr

ZZ
dWr(⌧)

2

+
X

1rvm

@Lv

@x
Lr

Z
(Wr(✓)�Wr(tk))dWv(✓) + (Wv(✓)�Wv(tk))dWr(✓). (A.19)

Here, the last integral in Eq. (A.19) can be evaluated to �Wr�Wv
2 , leading to

xn+1 = xn + f(xn)dt+
mX

r=1

Lr(xn)�Wr,n

+
mX

r,v=1

@Lv(xn)

@x
Lr(xn)

✓
�Wr,n�Wv,n � �r,vdt

2

◆
(A.20)
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Appendix B

Quantum Bayesian Approach

This approach, we use the quantum Bayesian conditional probability rule to con-

struct the measurement operator, which is

P (X|Y ) =
P (Y |X)P (X)

P (Y )
, (B.1)

where P (X|Y ) means the probability of getting outcome X if given B.

This section we examine for the two-level system following A. Chantasri’s treat-

ment in our notation [29]. Here, we consider a single electron in the double quantum

dots. The setting probed the electron by a capacitively coupled quantum point con-

tact. One can detect the current signal which depends on whether the location of the

electron is in dot a or b. The system’s Hamiltonian of the qubit is Ĥ = ✏

2 �̂z � �
2 �̂x

where ✏ is an energy asymmetry between two dot and � is a tunnelling rate between

two dots. Let us define qubit states |0i , |1i corespond to the two dot locations where

r is the measurement readout defined as r(t) = z(t)+
p
⌧⇠(t) = yt/

p
⌧ . We also define

a 2⇥2 density matrix as ⇢ = {{⇢00, ⇢01}, {⇢10, ⇢11}}. We can write the probability of

the state being in |0i given the measurement outcome r as

P (0|r) =
P (r|0)

⇢00P (r|0) + ⇢11P (r|1) , (B.2)

here we have used P (0) = ⇢00 and P (1) = ⇢11, we can do in the same way for
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the state |1i. From the central limit theorem, the probability distributions for the

measurement readout r are given by

P (r|0) =

r
dt
2⇡⌧

exp


�(r � 1)2

dt
2⌧

�
, (B.3)

P (r|1) =

r
dt
2⇡⌧

exp


�(r + 1)2

dt
2⌧

�
. (B.4)

We can write the measurement operator by using quantum Bayesian update, which

is

M̂r =
p

P (r|0) |0i h0|+
p

P (r|1) |1i h1| ,

=

✓
dt
2⇡⌧

◆1/4

exp


�dt(r � �̂z)2

4⌧

�
(B.5)

Since we consider imperfect measurements, we can think of the losing information

as averaging all possible lost readouts, which is

O� =

Z
druM̂ru⇢M̂

†
ru
, (B.6)

where we call it a dephasing term and operate this on the off-diagonal elements of

⇢. The state update evolution of qubit is given by

⇢(t+ dt) = O�U�tMrn [⇢(t)], (B.7)

where U�t[⇢(t)] = e
�iĤ�t

⇢(t)eiĤ�t is a unitary operation and Mrn [⇢(t)] =
M̂rn⇢(t)M̂

†
rn

Tr(M̂rn⇢(t)M̂
†
rn)

.
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