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ABSTRACT 

 

Magnetotelluric (MT) method is an electromagnetic (EM) geophysical exploration method. This 

is one of the widely used techniques in the geophysical survey. This method has contributed to 

many geophysical prospecting including geothermal, hydrocarbon, and mineral explorations e.g. 

S. Boonchaisuk et al., 2013; P. Amatyakul et al., 2015. 

 The Earth’s electric field and magnetic field at the surface are recorded by stations in the 

investigation area. The source of these fields is a natural electromagnetic wave propagating 

downward from the ionosphere and diffuses into Earth’s subsurface according to its frequency. 

The relation between both fields and subsurface resistivity distribution is governed by Maxwell’s 

equations in the frequency domain. By using the inversion software, a kind of advanced 

mathematical optimization, the resistivity model of the subsurface can be obtained. 

 There are many available 3-D MT inversion software e.g. W. Siripunvaraporn et al., 2005; 

W. Siripunvaraporn, and G. Egbert, 2009. Most of the 3-D inversion takes a large computational 

time to obtain the 3-D resistivity model. It is not practical to obtain the 3-D resistivity model during 

the field operation. It will be a great benefit to get the estimated resistivity model for the 3-D MT 

acquisition or called quasi 3-D MT resistivity model. 

 E. Auken et al., 2005 used 1-D MT inversion to reveal the resistivity structure at the 

minimal computational time. There is also other work using 1-D MT inversions to estimate the 3-

D resistivity model e.g. Fernando Aca´cio Monteiro Santos et al., 2011. 

 However, the problems with the 1-D MT inversion are giving a rough picture but 3-D MT 

inversion sharpening the resistivity structure. The 3-D inversion reveals much more consistent 

details than the 1-D inversion (Charles Muturia Lichoro, 2015). Therefore, we propose to develop 

an efficient 1-D MT inversion by taking structural information between MT sites simultaneously 

during the inversion process. 

Keywords: Magnetotelluric method, geophysical prospecting, MT inversion, spatial constraint 
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CHAPTER I 

INTRODUCTION 

 

In the present world, most useful natural resources can be obtained from underground. The 

excavation cost is dramatically increased following the deepness of the hole, according to this 

reason, the scientific suggestion is very important in order to assure the location of resources. The 

Magnetotelluric (MT) method is an electromagnetic (EM) geophysical exploration method. This 

is one of the widely used techniques in the geophysical survey. This method has contributed many 

geophysical prospecting including geothermal, hydrocarbon, and mineral explorations. 

 

1.1 Motivation 

Most of the 3-D inversion takes a large computational time to obtain the 3-D resistivity model. It 

is not practical to obtain the 3-D resistivity model during the field operation. It will be a great 

benefit to get the estimated resistivity model for the 3-D MT acquisition or called quasi 3-D MT 

resistivity model. Therefore, we propose to develop an efficient 1-D MT inversion by taking 

structural information between MT sites simultaneously during the inversion process. 

 

1.2 Aims and Objectives 

This work aims to develop an efficient 1-D MT inversion estimating resistivity model for 3-D MT 

or called spatially-constrained 1-D MT inversion. This will enable getting accurate quasi 3-D 

resistivity structure by using this newly develop 1-D MT inversion. 
 

1.3 Modeling 

Modeling is an important procedure for determining the model of the subsurface from the data 

response by the associated governing physics principles. There are two essential parts of 

geophysical modeling, forward modeling and inversion. 

1.3.1 Forward Modeling 

Forward modeling is a process which calculates the predicted data response of a survey from the 

known model through theoretical or numerical calculations. In most cases, numerical calculation 

is required because of the model complexity. 

1.3.2 Inversion 

For geophysical problems, there is no simple and direct relation to calculate the subsurface model 

from the measurement data. This can be conducted through a mathematical optimization process 

called “inversion” which finds the model that fits the input data. 
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CHAPTER II 

BACKGROUND AND RELATED WORKS 

 

2.1 Magnetotellurics: Basic Theoretical Concepts 

2.1.1 Introduction 

The Magnetotelluric method or Magnetotellurics (MT) is an electromagnetic geophysical 

exploration technique that images the electrical properties (distribution) of the Earth at subsurface 

depths. The energy for the Magnetotelluric technique is from natural source of external origin. 

When this external energy, known as the primary electromagnetic field, reaches the Earth’s surface, 

part of it is reflected back and remaining part penetrates into the Earth. Earth acts as a good 

conductor, thus electric currents (known as telluric currents) are induced in turn produce a 

secondary magnetic field.  

 Magnetotellurics is based on the simultaneous measurement of total electromagnetic field, 

i.e. time variation of both magnetic field 𝐵(𝑡) and induced electric field 𝐸(𝑡). The electrical 

properties (e.g. electrical conductivity) of the underlying material can be determined from the 

relationship between the components of the measured electric (𝐸) and magnetic field (𝐵) variations, 

or transfer functions: The horizontal electric (𝐸𝑥 and 𝐸𝑦) and horizontal (𝐵𝑥 and 𝐵𝑦) and vertical 

(𝐵𝑧 ) magnetic field components. According to the property of electromagnetic waves in the 

conductors, the penetration of electromagnetic wave depends on the oscillation frequency. The 

frequency of the electromagnetic fields development of the theory determines the depth of 

penetration. 

 The basis for MT method is found by Tikhonov (1950) and Cagniard (1953). In half a 

century since its inception, important developments in formulation, instrumentation and 

interpretation techniques have yielded MT as a competitive geophysical method, suitable to image 

broad range of geological targets. 

2.1.2 Source Field of MT Signals 

The MT signals are generated from two sources: 

1. At the lower frequencies, generally less than 1 Hz, or more than 1 cycle per second, the source 

of the signal is originated from the interaction of the solar wind with the Earth’s magnetic field. 

As solar wind emits streams of ions, it travels into space and disturbs the Earth’s ambient magnetic 

field and produces low-frequency electromagnetic energy that penetrates the Earth. 

2. The high frequency signal is greater than 1 Hz or less than 1 cycle per second is created by 

world-wide thunderstorm activity, usually near the equator. The energy created by these storms 

travels around the Earth in a wave guide between the Earth’s surface and the ionosphere, with part 

of the energy penetrates into the Earth. 
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2.1.3 Principles of MT 

2.1.3.1 Maxwell’s Equation 

The electromagnetic fields within a material of a non-accelerated reference frame can be described 

by Maxwell’s equations. These can be expressed in differential form with the International system 

of Units (SI) as: 

 𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
; Faraday’s law 

 

(2.1) 

 𝛻 × 𝐻 = 𝐽 +  
𝜕𝐷

𝜕𝑡
; Ampere’s law 

 

(2.2) 

 𝛻 ∙ 𝐷 = 𝜌𝑉; Gauss’s law 

 

(2.3) 

 𝛻 ∙ 𝐵 = 0; Gauss’s law for magnetism 

 

(2.4) 

where 𝐸 (V/m) and 𝐻 (A/m) are the electric and magnetic fields, B is the magnetic induction. 𝐷 

(C/m2)) is the displacement current and 𝜌 (C/m3)) is the electric charge density owing to free 

charges. 𝐽 and 
𝜕𝐷

𝜕𝑡
 (A/m2) are the current density and the varying displacement current respectively. 

 Maxwell’s equations can also be related through their constitutive relationship: 

 𝐽 = 𝜎𝐸, 

 

(2.5) 

 𝐷 = 𝜀𝐸, 

 

(2.6) 

 𝐵 = 𝜇𝐻, (2.7) 

 

𝜎, 𝜀 and 𝜇 describe intrinsic properties of the materials through which the electromagnetic fields 

propagate. 𝜎 (S/m) is the electrical conductivity (its reciprocal being the electrical resistivity 𝜌 =

 1/ 𝜎  (Ω-m)), 𝜀  (F/m) is the dielectric permittivity and 𝜇  (H/m) is the magnetic permeability. 

These magnitudes are scalar quantities in isotropic media. In anisotropic materials they must be 

expressed in a tensorial. In this work, it will be assumed that the properties of the materials are 

isotropic. 

 In a vacuum, the dielectric permittivity is 𝜀 = 𝜀0 = 8.85 × 10−12  F/m. Within the Earth, 

this value ranges from 𝜀0 (vacuum and air) to 80 𝜀0 (water). It can also vary depending on the 

frequency of the electromagnetic fields; Christopherson (1998). 

 For most of the Earth materials and for the air, the magnetic permeability ‘‘𝜇’’ can be 

approximated to its value in a vacuum, 𝜇0 = 4𝜋 × 10−7 H/m. However, in highly magnetized 

materials this value can be greater, for example, due to an increase in the magnetic susceptibility 

below the Curie point temperature (Hopkinson effect, e.g. Keller (1987)). 

 Across a discontinuity between two materials, named 1 and 2, the boundary conditions to 

be applied to the electromagnetic fields and currents described by Maxwell’s equations are: 
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 n × (𝐸2 − 𝐸1) = 0, 
 

(2.8) 

 n × (𝐻2 − 𝐻1) = 𝐽𝑠, 
 

(2.9) 

 n × (𝐷2 − 𝐷1) = 𝜌𝑠, 
 

(2.10) 

 n × (𝐵2 − 𝐵1) = 0, 
 

(2.11) 

 n × (𝐽2 − 𝐽1) = 0, 
 

(2.12) 

where n is the unit vector normal to the discontinuity boundary, 𝐽𝑠 (A/m2) is the current density 

along the boundary surface and 𝜌𝑠 (C/m2) is the surface charge density. In the absence of surface 

currents, and considering constant values of 𝜀  and 𝜇 , the tangential components of 𝐸  and the 

normal components of 𝐽 are continuous, whereas the both tangential and normal components of 𝐵 

are continuous across the discontinuity. 

 Due to the nature of the electromagnetic sources used in MT, the properties of the Earth 

materials and the depth of investigations considered, two hypotheses are applicable: 

(a)  Quasi-stationary approximation: Displacement currents (
𝜕𝐷

𝜕𝑡
) can be neglected relative 

 to conductivity currents (𝐽) for the period range 10−5 to 105 s and for not extremely low 

 conductivity values. Therefore, the propagation of the electromagnetic fields through the 

 Earth can be explained as a diffusive process, which makes it possible to obtain responses 

 that are volumetric averages of the measured Earth conductivities. 

(b)  Plane wave hypothesis: The primary electromagnetic field is a plane wave that propagates 

 vertically down towards the Earth surface (z direction); Radhakrishnamurthy C, Likhite 

 SD (1970). 

The searched solutions of the electromagnetic fields from Maxwell’s equation can be expressed 

through a linear combination of harmonic wave: 

 𝐸 = 𝐸0 ∙ 𝑒𝑖(𝑤𝑡+𝑘𝑟) 
 

(2.13) 

 𝐵 = 𝐵0 ∙ 𝑒𝑖(𝑤𝑡+𝑘𝑟) 
 

(2.14) 

where 𝜔  (rad/s) is the angular frequency of the electromagnetic oscillations, 𝑡(s) is the time; 

𝑘(m−1) and 𝑟(m) are the wave and position vectors respectively. In both expressions, the first term 

in the exponent corresponds to wave oscillations and the second term represents wave propagation. 

 Using the harmonic expressions of the electromagnetic fields (Eqs. 2.13 and 2.14) and their 

constitutive relationships (Eqs. 2.5–2.7), Maxwell’s equations in frequency domain for MT 

hypothesis (a quasi-stationary approximation) are described as follows: 

 ∇ × 𝐸 = −𝑖𝜔𝐵 
 

(2.15) 

 ∇ × 𝐻 = 𝜇0𝜎𝐸 (2.16) 
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 ∇ ∙ 𝐸 =
𝜌𝜀

𝜖
 

 

(2.17) 

 ∇ ∙ 𝐵 = 0 
 

(2.18) 

where the value of the magnetic permeability (𝜇) is considered equal to the value in a vaccum (𝜇0). 

 In the absence of charges, the right term of Eq. 2.17 vanishes, and the electric and magnetic 

field solutions depend solely upon angular frequency (𝜔) and conductivity (𝜎). 

 Finally using the hypothesis (b) (plane wave) and applying the boundary conditions (Eqs. 

2.8–2.12) across discontinuities, the solutions of Maxwell’s equations can be obtained. 

 In the case of a homogeneous structure, the components of the electric and magnetic fields 

take the form: 

 𝐴𝑘 = 𝐴𝑘0 ∙ 𝑒𝑖𝑤𝑡 ∙ 𝑒−𝑖𝛼𝑧 ∙ 𝑒−𝛼𝑧 
 

(2.19) 

with 𝛼 = √𝜇𝜎𝜔/2 (m−1) the first factor of the equation is the wave amplitude, the second and 

third factor (imaginary exponentials) is sinusoidal time and depth variations respectively and the 

fourth is exponential decay. This decay can be quantified by the skin depth (𝛿), and the value of z 

for which this term decays to 1/e; Vozoff K (1972) : 

 
𝛿 = √

2

𝜇0𝜎𝜔
≈ 500√𝜌𝑇 (m). 

 

(2.20) 

 The skin depth permits the characterization of the investigation depth, which, as can be 

seen, increases according to the square root of the product of medium resistivity and period. 

Although it has been defined for homogeneous media, its use can be extended to heterogeneous 

cases as well (e.g. geological structures). The above text has been taken from the Telford et al. 

2.1.3.2 Uniform Half Space 

In this case Earth is treated as a conducting half space with a plane surface. The assumptions 

usually made about the source field; Cagniard L (1953) are that it is homogeneous, infinite in 

dimension and is located effectively at infinity so that plane EM waves 18 2 Magnetotellurics: 

Basic Theoretical Concepts impinging on the Earth surface. Under these conditions, there are no 

horizontal variations of the EM field, i.e. 
𝜕𝐸

𝜕𝑥
=

𝜕𝐻

𝜕𝑥
=

𝜕𝐸

𝜕𝑦
=

𝜕𝐻

𝜕𝑦
= 0. Hence 𝐻𝑧 = 0 = 𝐸𝑧 = 0 for the 

X component, Eq. 2.7 reduces to 

 𝜕2𝐸𝑥

𝜕𝑍2
= 𝐾2𝐸𝑥 

 

(2.21) 

where 𝐾2 = 𝑖𝜇𝜔𝜎. From Maxwell’s equation, 
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𝐻𝑦 = (−𝑖/𝜔𝜇)

𝜕𝐸𝑥

𝜕𝑍
 

 

(2.22) 

Since the fields originate from a source above the earth, all the field quantities must remain finite. 

At 𝑍 = ∞. Hence the solution of Eq. 2.21 is 

 𝐸𝑥 = 𝑄𝑒−𝐾𝑍 
 

(2.23) 

where 𝑄 is a constant. 

 As seen from the foregoing an electromagnetic wave propagating into the earth (linear, 

homogeneous and isotropic) has its electric and magnetic field wave vectors orthogonal to each 

other, and the ratio of electric and magnetic field intensity (𝐸/𝐻) termed as the impedance (𝑍) is 

a characteristic measure of the EM properties of the sub surface medium, and constitutes the basic 

MT response function. 

 For a plane wave, we have 

 
𝑍 =

𝐸𝑥

𝐻𝑦
=

𝑖𝜔𝜇

𝑘
 

 

(2.24) 

where 𝑍 is the characteristic impedance, Ex the electric field intensity (north) in mv/km and 𝐻𝑦 

the magnetic field intensity (east) in 𝛾 (10−5 Oe) 

 

𝑍 = √
𝑖𝜔𝜇

𝜎
 

 

(2.25) 

From the above equation it may be deduced that in a homogeneous and isotropic half-space, the 

magnetic field lags behind the electric field by 𝜋/4 rad. 

 The true resistivity of the half-space is 

 
𝜌 =

1

𝜎
=

|𝑍|2

𝜇𝜔
=

𝑇

2𝜋𝜇
|𝑍|2 

 

(2.26) 

where  𝑇 is the period, with the EM system of units, Cagniard L (1953) has obtained the following 

equation as 

 
𝜌 = 0.2𝑇

|𝐸𝑥|
2

|𝐻𝑦|
2 

 

(2.26a) 

where 𝜌 = resistivity in Ω-m 

 𝐸 = the horizontal electric field in mv/km 

 𝐻 = the orthogonal horizontal magnetic field in gamma and 
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 𝑇 = period in seconds 

 When the earth resistivity is non-uniform, the right hand sides of Eq. 2.26a provide 

apparent resistivities (𝜌𝑎; instead of true resistivity), which are frequency (period) dependent, as 

is the case with 1-D, 2-D, or 3-D situations. 

 In a homogeneous and isotropic earth, the true resistivity of the earth is related to the 

characteristic impedance ‘‘𝑍’’ through the relation: 

 
𝜌𝑎 = 0.2𝑇|𝑍|2 = 0.2𝑇

|𝐸|2

|𝐻|2
 

 

(2.27) 

Where  𝑍 = 𝐸/𝐻  Note:  𝑍 = 𝐸/𝐻 

    𝑍𝑥𝑦 = 𝐸𝑥/𝐻𝑦 

    𝑍𝑦𝑥 = 𝐸𝑦/𝐻𝑥 

where  𝜌𝑎 is the apparent resistivity in Ω -m and 𝑇 is the period in sec,  

 and phase of 𝑍𝑥𝑦, 

 
𝜑 = tan−1

(Im[
𝐸𝑥
𝐻𝑦

])

(Re[
𝐸𝑥
𝐻𝑦

])
. 

 

 

(2.28) 
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CHAPTER III 

METHODOLOGY 

 

3.1 Forward Modeling 

3.1.1 1-D Forward Modeling 

 

Figure 3.1: 1-D Earth Model 

Applying boundary conditions for 1-D or layered medium results in a recursive formula relating 

impedance of two consecutive layers. So we get the formula to calculate the impedance on surface 

(𝑍1) by 

 𝑍𝑁−1 = 𝑍0𝑁−1
1−𝑅𝑁−1exp (−2𝑘𝑁−1ℎ𝑁−1)

1+𝑅𝑁−1exp (−2𝑘𝑁−1ℎ𝑁−1)
 , (3.1) 

 

where 𝑅𝑁−1 = 
𝑍0𝑁−1−𝑍𝑁
𝑍0𝑁−1+𝑍𝑁

 ; reflection coefficient,  

 𝑍0𝑁−1 = (iωμ
0
ρ
N-1

)
1/2

; intrinsic impedance,  

 𝑘𝑁−1 = (
iωμ0

ρN-1
)
1/2

; induction parameter,  

 𝑍𝑁 = 𝑍0𝑁 = (iωμ
0
ρ
N

)
1/2

; impedance at N-th (or last) layer.  

Then, we can calculate the apparent resistivity  

 𝜌𝑎 = 1

𝜔𝜇
|𝑍1|

2, (3.2) 

and phase 

 𝜙 = 𝑡𝑎𝑛−1 (
𝐼𝑚{𝑍1}

𝑅𝑒{𝑍1}
). (3.3) 
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We plot both of them to different frequencies (𝑓𝑖) or periods (𝑇𝑖). 

3.1.2 Pseudo Code for Forward Modeling 

Import  frequencies, resistivities, and thicknesses of each layers 

Assign  magnetic permeability (𝜇0) 

 

for   all frequencies 

  Calculate  angular frequency 

  Calculate  impedance at the deepest layer 

  for   before the deepest layer to surface 

    Calculate  the impedance on surface using recursive formula 

  end 

  Calculate  apparent resistivity 

  Calculate  phase 

end 

3.2 Occam’s inversion 

Occam's inversion was proposed by Constable et al. (1987) for 1-D MT and 1-D schlumberger 

DCR. The philosophy of the Occam approach is to seek the “smoothest” or “minimum” structure 

model subject to a constraint on the misfit (see Constable et al., 1987; Siripunvaraporn & Egbert, 

2000; Boonchaisuk et al., 2008), which can be mathematically transformed into a problem of 

minimization of an objective function W, 

 𝑊 = Φ𝑚 + 𝜆−1Φ𝑑. 

 

(3.4) 

Φ𝑚 denotes the “model function”. Φ𝑑 represents the “data functional”. Here, we want to minimize 

Φ𝑚 subject to Φ𝑑 = 0. 𝜆 is introduced as the Lagrange multiplier acting as the regularization or 

trade-off parameter between the model and data functionals. 

3.2.1 Data functional 

 Φ𝑑 = 𝜒𝑑
2 − 𝜒𝑑∗

2 , 

 

(3.5) 

As with the least-square problem, 𝜒𝑑
2 represents an average variance between the measured data 

(𝑑) and the numerically predicted data (𝑓) which can be expressed by 

 
𝜒𝑑

2 = ∑ (
𝑑𝑖−𝑓𝑖

𝜖𝑖
)
2

𝑁
𝑖=1 , 

(3.6) 

where 𝜖𝑖 is the error of the measured data 𝑑𝑖 and 𝑁 is the number of data. 

 Equation (3.6) can be expressed in matrix form as, 
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 𝜒𝑑
2 = (𝑑 − F[𝑚])T𝐶𝑑

−1(𝑑 − F[𝑚]), 

 

(3.7) 

where  𝑑 is a vector containing the measured data.  

 F[𝑚] is a vector containing the predicted data generated by the forward modeling from the 

 model vector 𝑚 (F represents the forward modeling operator), 

 

F[𝑚] =

[
 
 
 
 
 
𝜌𝑎1

⋮
𝜌𝑎𝑁

𝜙1

⋮
𝜙𝑁 ]

 
 
 
 
 

2𝑁×1

 

 

 

(3.8) 

   

 𝜌1  

 𝜌2  

 ⋮  

 𝜌𝑀  

   

Model parameters are then ordered into a vector by column from top to bottom elements, 
 

 
𝑚 = [

𝜌1

⋮
𝜌𝑀

]

𝑀×1

 
 

(3.9) 

 

where  𝑀 is the number of model parameters which is equal to the total number of discretized 

 model blocks. 

 The inverse covariance matrix can be expressed as 

 𝐶𝑑
−1 = 𝑊𝑑

T𝑊𝑑, (3.10) 

where  

 

𝑊𝑑 =

[
 
 
 
1/𝜖1

1/𝜖2

⋱
1/𝜖𝑁]

 
 
 

𝑁×𝑁

. 

 

 

(3.11) 

3.2.2 Model functional 

 Φ𝑚 = 𝜒𝑚
2 − 𝜒𝑚∗

2 , (3.12) 

 

 𝜒𝑚
2 = ∑ (𝑚𝑖+1 − 𝑚𝑖)

2𝑀
𝑖=1 . (3.13) 

 

Equation (3.13) can be expressed in matrix form as, 

𝜒𝑚
2 = (𝑚𝑘+1 − 𝑚0)

T𝐶𝑚
−1(𝑚𝑘+1 − 𝑚0), 

where  𝑚0 is the reference prior model, 𝐶𝑚
−1 is the model covariance. 
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 The model roughness or the inverse of the model covariance (𝐶𝑚
−1 ) operator is introduced 

in Degroot-Hedlin & Constable (1990) as, 

 

 𝐶𝑚
−1 = ∆𝑧

T𝛥𝑧, 

 

(3.14) 

where 

 

 

𝛥𝑧 =

[
 
 
 
 

0
−1 1

−1 1
⋱ ⋱

−1 1 ]
 
 
 
 

𝑀×𝑀

. 

 

(3.15) 

 

3.2.3 Minimization of an Objective Function 

 For Occam's inversion, the objective function can be expressed according to the given data 

functional and model functional as  

𝑊(𝜆,𝑚) = (𝑚 − 𝑚0)
T𝐶𝑚

−1(𝑚 − 𝑚0) + 𝜆−1[(𝑑 − F[𝑚])T𝐶𝑑
−1(𝑑 − F[𝑚]) − 𝜒𝑑∗

2 ], 
  (3.16) 

where  𝜒𝑑∗
2  is the desired level of misfit. 

We use a Taylor’s series expansion to linearize F[𝑚] as 

 F[𝑚 + Δ𝑚] = F[𝑚] +
𝜕F[𝑚]

𝜕𝑚
Δ𝑚. 

 

(3.17) 

Since 𝑚𝑘+1 = 𝑚𝑘 + Δ𝑚, equation (3.2.3) can be written in iterative form, 

 F[𝑚𝑘+1] = F[𝑚𝑘] + 𝐽𝑘(𝑚𝑘+1 − 𝑚𝑘), 

 

(3.18) 

where  k denotes the iteration number,  

 𝑚𝑘+1 represents the model at the next iteration,  

 the first derivative 𝐽𝑘 is the Jacobian or sensitivity calculated at iteration k and 

 

𝐽𝑘 ≡
𝜕F[𝑚]

𝜕𝑚
. 

 

We calculate the Jacobian using forward difference method as 

 

𝐽𝑘 =

[
 
 
 

𝐹[𝑚+𝜌1]1−𝐹[𝑚]1

𝜌1
⋯

𝐹[𝑚+𝜌𝑀]1−𝐹[𝑚]1

𝜌𝑁

⋮ ⋱ ⋮
𝐹[𝑚+𝜌1]2𝑁−𝐹[𝑚]2𝑁

𝜌1
⋯

𝐹[𝑚+𝜌𝑀]2𝑁−𝐹[𝑚]2𝑁

𝜌𝑁 ]
 
 
 

2𝑁×𝑀

. 

 

Substituting equation (3.18) into equation (3.16), we get the objective function in iterative form, 



12 
 

𝑊𝜆 = (𝑚𝑘+1 − 𝑚0)
T𝐶𝑚

−1(𝑚𝑘+1 − 𝑚0) + 𝜆−1 [(𝑑 − F[𝑚𝑘] − 𝐽𝑘(𝑚𝑘+1 − 𝑚𝑘))
T
𝐶𝑑

−1(𝑑 −

           F[𝑚𝑘] − 𝐽𝑘(𝑚𝑘+1 − 𝑚𝑘)) − 𝜒𝑑∗
2 ]. 

  (3.19) 

To incorporate the prior model 𝑚0 into the inversion, we replace as 

𝑚𝑘+1 − 𝑚𝑘 = (𝑚𝑘+1 − 𝑚0) − (𝑚𝑘 − 𝑚0), 

and substitute into equation (3.19). The objective function becomes 

𝑊𝜆 = (𝑚𝑘+1 − 𝑚0)
T𝐶𝑚

−1(𝑚𝑘+1 − 𝑚0) + 𝜆−1 [(𝑑̂ − 𝐽𝑘(𝑚𝑘+1 − 𝑚0))
T

𝐶𝑑
−1 (𝑑̂ − 𝐽𝑘(𝑚𝑘+1 −

           𝑚0)) − 𝜒𝑑∗
2 ], 

  (3.20) 

where  𝑑̂ = 𝑑 − F[𝑚𝑘] + 𝐽𝑘(𝑚𝑘 − 𝑚0). 

 In order to find the 𝑚𝑘+1 that minimizes the objective function, we differentiate equation 

(3.20) with respect to 𝑚𝑘+1 at the stationary point, 

 

 𝜕𝑊𝜆

𝜕𝑚𝑘+1
= 0. 

 

(3.21) 

Hence, the expression of the iterative sequence is (see Vachiratienchai, 2007; Boonchaisuk, 2007) 

 𝑚𝑘+1 = (𝜆𝐶𝑚
−1 + 𝛤𝑘

𝑚)−1𝐽𝑘
𝑇𝐶𝑑

−1𝑑̂ + 𝑚0, 

 

(3.22) 

where  𝛤𝑘
𝑚 = 𝐽𝑘

𝑇𝐶𝑑
−1𝐽𝑘. 

3.2.4 Pseudo code for Jacobian 

Import  F[𝑚𝑘], frequencies, resistivities, and thicknesses of each layers, and 𝑑𝑚 

for   all layers 

  Add   𝑑𝑚 with each layer 

  Calculate  F[𝑚𝑘 + 𝑑𝑚] 

end 

Calculate Jacobian =
F[𝑚𝑘+𝑑𝑚]−F[𝑚𝑘]

𝑑𝑚
   

3.2.5 Pseudo code for Occam’s inversion 

Import  synthetic data or observed data 

Assign  error of each data to get 𝐶𝑑
−1 

Assign  initial model or 𝑚0 

Assign  𝐶𝑚
−1 
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Assign  𝑚1 using 𝑚𝑘 = 𝑚0 

for  2nd iteration to the iteration that 𝑚𝑘+1 satisfy some condition e.g. data misfit 

  for   log10(𝜆) = 0 to 6 

    Choose  the 𝜆 that give the lowest data misfit  

  end 

Calculate 𝑚𝑘+1 = (𝜆𝐶𝑚
−1 + 𝛤𝑘

𝑚)−1𝐽𝑘
𝑇𝐶𝑑

−1𝑑̂ + 𝑚0 

end 

3.3 Occam’s inversion with Spatial Constraint 

 

Figure 3.2: 2-D Earth Model 

Both forward response vector and the model vector of each site station, we connect the vector until 

the last vector as 
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F[𝑚] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜌𝑎11

⋮
𝜌𝑎𝑁1

𝜙11

⋮
𝜙𝑁1

𝜌𝑎12

⋮
𝜌𝑎𝑁2

𝜙12

⋮
𝜙𝑁2

⋮
𝜌𝑎1𝑛𝑠

⋮
𝜌𝑎𝑁𝑛𝑠

𝜙1𝑛𝑠

⋮
𝜙𝑁𝑛𝑠 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2𝑁×𝑛𝑠)×1

, 

 

 

 

 

 

 

 

 

 

 

(3.23) 

and 

 

𝑚 = [

𝜌1

𝜌2

⋮
𝜌𝑀

]

𝑀×1

, 

 

(3.24) 

where ns is the number of station. 

We connect all Jacobian of each station to be band matrix in each k iteration as 

 

 

𝐽 =

[
 
 
 
 
𝐽𝑘1

⋯

⋮ 𝐽𝑘2
⋮

⋱
⋯ 𝐽𝑘𝑛𝑠]

 
 
 
 

(2𝑁×𝑛𝑠)×𝑀

. 

 

We change to use the model roughness or the inverse of the model covariance (𝐶𝑚
−1 ) operator is 

introduced in Degroot-Hedlin & Constable (1990) as, 

 

 𝐶𝑚
−1 = ∆𝑥𝑇∆𝑥 + ∆𝑧𝑇∆𝑧 

 

(3.25) 

where  𝛥𝑧 is the same as the equation (3.15) 
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𝛥𝑥 =

[
 
 
 
 
−1 1

−1 1
⋱ ⋱

−1 1
0 ]

 
 
 
 

𝑀×𝑀

, 

 

 

(3.26) 

 

where 0 is an 𝑀𝑧 × 𝑀 zeros matrix,  

 and there are 𝑀𝑧 − 1 zeros between the entries in each row  of ∆𝑥. 

 

3.3.1 Pseudo code for Occam’s inversion with spatial constraint 

Import observed data 

Connect  data of all station to be one vertical vector 

Assign  error of each data to get 𝐶𝑑
−1 

Assign  initial model or 𝑚0 

Assign  𝐶𝑚
−1 in 2-D 

Assign  𝑚1 using 𝑚𝑘 = 𝑚0 

for  2nd iteration to the iteration that 𝑚𝑘+1 satisfy some condition e.g. data misfit 

  for   log10(𝜆) = 0 to 6 

    Choose  the 𝜆 that give the lowest data misfit  

  end 

Calculate  𝑚𝑘+1 = (𝜆𝐶𝑚
−1 + 𝛤𝑘

𝑚)−1𝐽𝑘
𝑇𝐶𝑑

−1𝑑̂ + 𝑚0 

end 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Forward Modeling 

I assign resistivity in each layer to check the results of the forward modeling by showing in 

apparent resistivity and phase in figure 4.1-4.5. 

 

Figure 4.1: graphs of apparent resistivity vs period and phase vs period in 3-layered resistivity 

earth model [10; 10; 10].  
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Figure 4.2: graphs of apparent resistivity vs period and phase vs period in 3-layered resistivity 

earth model [100; 100; 100].  

 

Figure 4.3: graphs of apparent resistivity vs period and phase vs period in 3-layered resistivity 

earth model [1000; 1000; 1000].  
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Figure 4.4: graphs of apparent resistivity vs period and phase vs period in 3-layered resistivity 

earth model [100; 1000; 10].  

 

Figure 4.5: graphs of apparent resistivity vs period and phase vs period in 3-layered resistivity 

earth model [100; 10; 1000].  

4.2 Inversion 

I show the results using Occam’s inversion and compare to synthetic data and model in figure 4.6-

4.7, which they give the mean relative error that pretty satisfies. 
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Figure 4.6: graphs of apparent resistivity vs period and resistivity vs depth in 20-layered resistivity 

earth model [2; 2; 2; 1; 1; 2; 2; 1; 1; 3; 3; 2; 2; 2; 1; 1; 1; 1; 3; 3] in log-sacle.  

 

Figure 4.7: Comparison between synthetic resistivity model and inverted resistivity model in 20-

layered resistivity earth model [2; 2; 2; 1; 1; 2; 2; 1; 1; 3; 3; 2; 2; 2; 1; 1; 1; 1; 3; 3] in log-sacle.  
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4.3 Inversion with Spatial Constraint 

I use the same data with the previous inversion results but add 1 more station to be 2 stations and 

run inversion with constraint in figure 4.8-4.11.

 

Figure 4.8: graphs of apparent resistivity vs period and resistivity vs depth in 20-layered resistivity 

earth model [2; 2; 2; 1; 1; 2; 2; 1; 1; 3; 3; 2; 2; 2; 1; 1; 1; 1; 3; 3] in log-sacle of both stations in 1-

10 iteration.  

 

Figure 4.9: graphs of apparent resistivity vs period and resistivity vs depth in 20-layered resistivity 

earth model [2; 2; 2; 1; 1; 2; 2; 1; 1; 3; 3; 2; 2; 2; 1; 1; 1; 1; 3; 3] in log-sacle in station 1.  
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Figure 4.10: graphs of apparent resistivity vs period and resistivity vs depth in 20-layered 

resistivity earth model [2; 2; 2; 1; 1; 2; 2; 1; 1; 3; 3; 2; 2; 2; 1; 1; 1; 1; 3; 3] in log-sacle in station 

2.  

 

Figure 4.11: Comparison between synthetic resistivity model and inverted resistivity model in 20-

layered resistivity earth model [2; 2; 2; 1; 1; 2; 2; 1; 1; 3; 3; 2; 2; 2; 1; 1; 1; 1; 3; 3] in log-sacle 

with constraint.  
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4.4 Inversion with Spatial Constraint in Real Data; 3-D resistivity 

model from Mae Chan geothermal system (P. Amatyakul et al., 2015) 

Finally, I try to test my inversion with real data from from 3-D resistivity model from Mae Chan 

geothermal system (P. Amatyakul et al., 2015) in figure 4.12-4.14. 

 

Figure 4.12: graphs of apparent resistivity vs period and resistivity vs depth of 4 in 34 station using 

data from 3-D resistivity model from Mae Chan geothermal system (P. Amatyakul et al., 2015) 

 

Figure 4.13: Inverted resistivity model of 4 in 34 station using data from 3-D resistivity model 

from Mae Chan geothermal system (P. Amatyakul et al., 2015) 
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Figure 4.14: Inverted resistivity model of all 34 stations using data from 3-D resistivity model 

from Mae Chan geothermal system (P. Amatyakul et al., 2015) 

4.5 Discussion 

 From Fig. 4.1-4.3, the apparent resistivity trend is straight line at the assigned resistivity 

value in each model because the resistivity doesn’t change. Likewise, the phase trend is also 

straight line at 45 degree because the apparent resistivity doesn’t change. Then I assign model that 

has different resistivity in each layer in Fig. 4.4-4.5, the apparent resistivity gradually increases or 

decreases following assigned resistivity, but the phase will increase if the apparent resistivity 

decrease, the phase will decrease if the apparent resistivity increase and the phase will constant if 

the apparent resistivity doesn’t change. 

 From Fig. 4.6-4.11, a synthetic test in a given resistance condition, the results are quite 

effective. In the case of a few stations are good but trying to test the data in many stations, there 

are lots of errors and the response to the model is not smooth enough. 
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CHAPTER V 

SUMMARY 

 

This project aims to 1-D MT inversion with spatial constraint. The calculation starts from the 

forward modeling applying boundary conditions for 1-D layered earth, then these conditions result 

in a recursive formula relating impedance of two consecutive layers. The apparent resistivity and 

phase are calculated in various frequencies (periods) and use for Occam’s inversion. Adding the 

spatial constraint by changing the model roughness to 2-D instead. The inversion results approach 

to the synthetic results, but using real data is not effective in many stations yet. The future works 

are to develop coding for a better result and compare to the real data from 3-D resistivity model 

from Mae Chan geothermal system (P. Amatyakul et al., 2015). 
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