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Abstract

Quantum communication is an important achievement of quantum technology,
and the quantum network is an ultimate goal. A network of quantum devices such
as qubits or quantum computers can yield interesting properties and potentials that
should be optimized, for instance, to overcome a bottleneck network for quantum
teleportation. Quantum network coding has been proposed to improve resource uti-
lization to support distributed computation but has not yet been put in to practice. In
terms of fundamental research, we investigate a particular implementation of quantum
network coding using measurement-based quantum computation on IBM Q proces-
sors and compare the performance of quantum network coding with entanglement
swapping and entanglement distribution via linear cluster states. We demonstrate
the suitability of noisy intermediate-scale quantum (NISQ) devices such as IBM Q
for the study of quantum networks and identify the factors that limit the performance
of quantum network coding on these processors and provide estimates or error rates
required to boost the final Bell pair fidelities to a point where they can be used for gen-
eration of genuinely random cryptographic keys among other useful tasks. In terms
of software development, the concept of measurement-based quantum network coding
has been implemented on classical computers employing local Pauli measurements. A
created software can generate a random network of 1-200 nodes with initial resource
or quantum network of cluster states. The software can analyze the network connec-
tivity, shortest paths between two nodes using Dijkstra algorithm as well as add or
remove nodes or edges. as well as to create entangled pairs of nodes in the network.
When Pauli X, Y and Z measurement operators act locally on specific nodes, a sub-
graph of resulting network of entangled cluster states is shown. Our software can be
used to analyze the architect of a quantum network of qubits or quantum computers,
which will be tremendously beneficial in quantum communication technology.
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Chapter 1

Introduction

1.1 Motivation on Quantum Networking

The Dream of realizing quantum internet seem to be far apart in the next decade.

However, the revolution coming with could change our lives forever. The essence of

quantum communication is to be able to transfer high-quality quantum information

from one place to another. In order to sent quantum information represented by

quantum bit i.e. qubit flying through the blue sky, Photon qubit becomes the best

candidate out of others because it can operate at room temperature. Nevertheless,

the noise can still degenerate the quality of the qubit along the way. Due to the

No-cloning theorem which not allows us to make an independent copy of quantum

information, the classical way of making a copy between the way to the destination

for purifying and preserving information is impossible. Nonetheless, the temptation

of applications coming along, e.g. quantum cryptography and superdense coding

leave the researcher no choice than to move forward on this path. Quantum repeater

is proposed [2, 4, 12, 7, 5] to overcome the problems. Entangle link is establish

along with a possible purification and error correction from quantum repeater nodes

between source to destination nodes. However, a similar problem in classical network

also incurs in quantum network which is a contention problem. If the capacity of

the route from multiple sources to multiple destinations is limit i.e. the demand of

the route is less than supply of the route, it will take longer time to complete the
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connection between nodes.

Measurement-based quantum network coding (MQNC) [8] is one of the proto-

col that can overcome a contention problem by using the idea of measurement-based

quantum computing [10]. Apparently, Pauli-measurements on cluster state can result-

ing in a new topological cluster state which can be easily turn into Bell-pair, the en-

tangle quantum state that application in quantum communication heavily depended.

Here, we investigate performance of MQNC on superconducting qubits quantum pro-

cessor and effect of the noise on the protocol using simulation.

1.2 Organization

The content of this project report is organized as follow. The background required

for this project is provided in 2. The implementing result on superconducting qubits

quantum computer and noisy simulation are present in 3. Following by Quantum

Network Analyzer software using graph theory is in 4. Finally, results are discuss in

5.
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Chapter 2

Background Theory

2.1 An introduction tale to Quantum Mechanics

In this section, we will bring you through a concept idea of quantum mechanics

and how does it work.

2.1.1 Conceptual Idea

A well known a story of a cat in the box is a Schrödinger’s attempt to de-

scribe the probabilistic nature of quantum mechanics by torture a kawaii cat. If

the Schrödinger’s cat is not clarify a thing or two enough then we would like to make

an attempt too.

Back in late 18th century, physicist believe that we can describe everything in the

universe with Newton’s physics known as classical mechanics. However, when they

have done experiment about smaller thing, they become aware that their beloved

classical mechanics cannot explain why small thing behaves like this. Double slit

experiment is a prime example of such a quantum phenomena.

The double-slit experiment is an experiment where electrons being shot through a

double-slit before a background. Classically, we would expect that the pattern should

look like a gunshot on the background. Surprisingly, electron shots produce an inter-

ference pattern like a wave. Nevertheless, if we take a peek at which hole do electrons
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pass-through, then the pattern behaves like what we would classically expect. This

strange behavior of electron was later found to be a wave-particle duality property

of a quantum object. In order to predict the behavior and properties of an object,

one needed an equation of motion of the object which obeys Newton’s law. Similar

to classical mechanics, to describe a quantum object, one needed ’wave function.’ of

quantum objects, which obeys Schrodinger’s equation. The difference is that the wave

function usually describes the probability amplitude of the quantum object being in

a specific state as a superposition of every possible outcome. If the wave function

is left undisputed, then when a quantum object got change by quantum operation,

a resulting wave function will be the superposition of every possible outcome, which

one outcome may interfere with others. However, if the wave function is disrupted

by ’measurement,’ the wave function will ’collapse,’ left with only particular possible

outcomes. The action of ’take a peek.’ is a measurement, which responsible for the

collapse of a wave function.

2.1.2 Mathematics formulation

A mathematics formulation capable of describe quantum mechanics, specifically

in quantum computing is a Dirac bra-ket notation formulation. For example, consider

orthogonal two-level system of quantum object in the wave function form of ket,

| i = ↵|0i+ �|1i, (2.1)

where ↵ and � are probability amplitude of state |0i and |1i respectively. The bra

form of equation 2.1 is complex conjugate of ket,

h | = ↵⇤h0|+ �⇤h1| (2.2)

Since ↵ and � are probability amplitude then they should obey a normalization

condition in order to conserve the probability as |↵|2 + |�|2 = 1. The calculation
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of bra-ket notation are follow,

h | i = (↵⇤h0|+ �⇤h1|)(↵|0i+ �|1i)

= ↵⇤↵h0|0i+ ↵⇤�h0|1i+ �⇤↵h1|0i+ �⇤�h1|1i

1 = |↵|2 + |�|2. (2.3)

As an orthogonal basis, hm|ni = 1 if m = n and hm|ni = 0 if m 6= n. Equation

2.1 reveal to us a superposition of state |0i and |1i which are possible outcomes of

measurement the wave-function in Z basis. Consider the case where ↵ = � = 1p
2

then, if we prepare this quantum state for one hundred sample and measure them,

we would observe that it will be |0i for fifty of the times.

The Dirac’s bra-ket notation in the vector form defined as

|0i ⌘

2

41

0

3

5 , |1i ⌘

2

40

1

3

5 , h0| ⌘
h
1 0

i
, h1| ⌘

h
0 1

i
thus | i ⌘

2

4↵

�

3

5 , (2.4)

which usually refer as computational basis or Pauli Z basis. For Pauli X and Y , they

defined as

|+i ⌘ 1p
2

2

41

1

3

5 , |�i ⌘ 1p
2

2

4 1

�1

3

5 , (2.5)

and

|+ ii ⌘ 1p
2

2

41

i

3

5 , |� ii ⌘ � 1p
2

2

4 1

�i

3

5 . (2.6)

We can describe a system of many quantum objects using tensor products, for exam-

ple, consider a system of two two-level system A and B,

A =

2

4a0
a1

3

5 , B =

2

4b0
b1

3

5 . (2.7)
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The composite system,

A⌦ B =

2

6666664

a0

2

4b0
b1

3

5

a1

2

4b0
b1

3

5

3

7777775
=

2

6666664

a0b0

a0b1

a1b0

a1b1

3

7777775
. (2.8)

In order to describe mixed state, we use density matrix which defined as,

| ih | =

2

4↵

�

3

5
h
↵⇤ �⇤

i

| ih | =

2

4|↵|
2 ↵�⇤

↵⇤� |�|2

3

5 (2.9)

2.1.3 Entanglement

Entanglement is a state where composite quantum system cannot write as tensor

product of subsystem. In other word, the action on quantum object will immediately

affect other. For example consider simple two quantum objects which take a form

similar to equation 3.1,

|�+i = 1p
2
(|00i+ |11i). (2.10)

The equation 2.10 is one of the famous Bell pair. Measuring one of the quantum

object will collapse the entire wave function which the remaining state show us that

the another quantum object will also be determined. In other word if the measuring

result of the first quantum object is in state |0i then the another will also be in

state |0i while if the result of first object is |1i then the another is also state |1i.

Furthermore, Bell pair also have other form which can use as Bell basis, which those

13



basis are defined as,

|�+i =
1p
2
(|00i+ |11i), (2.11)

|��i =
1p
2
(|00i � |11i), (2.12)

| +i =
1p
2
(|01i+ |10i), (2.13)

| �i =
1p
2
(|01i � |10i). (2.14)

Another entangle form which used in measurement-based quantum computing and

network coding is cluster state. A Simple form of cluster state is,

|G2i =
1

2
(|00i+ |01i+ |10i � |11i), (2.15)

where the entanglement lie in the global phase of the state |11i.

2.1.4 Fidelity

To quantify the closeness of two quantum states, the fidelity,

F (⇢, �) =


Tr

⇢qp
⇢�

p
⇢

��2
, (2.16)

is often used for density matrix ⇢ and �. If fidelity F (⇢, �) = 1 then ⇢ is identical to

state �. The fidelity can be reduce to,

F (⇢, �) = h |⇢| i, (2.17)

where � = | ih | and  is a pure state.

2.2 Quantum Communication and Computing

No-cloning theorem is a heart of quantum communication. There is no way to

make a copy of independent unknown quantum state which make quantum commu-
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nication achieve the next-level of security. While superposition property of quantum

state allow quantum computing to calculate every possible input at the very same

time, however the answer still, nevertheless, in superposition which mean that we will

obtain random answer from measurement. The job of quantum physicist is to figuring

out how to obtain useful answer from the outcome quantum state. In this section,

we will explore how to use quantum state for computation and communication task.

Fortunately, quantum computing and quantum communication are using the very

same fundamental concept.

2.2.1 Qubit

Comparing to classical computer, the smallest unit of quantum computer called

’qubits’. Qubit can be any quantum object that can be treat as two-level system as

in equation 2.1.

2.2.2 Quantum Operation

As a building block of quantum operation, quantum logic gate is also necessary

to manipulate quantum state storing in qubits as how classical computing is done by

classical logic gate. There are many universal sets of quantum logic gate required to

compute any computation task. Here, we present selected useful quantum gates.

The very first quantum gate we excited to introduce is Hadamard gate defined in

matrix form as

H =

2

41 1

1 �1

3

5 . (2.18)

Hadamard gate usually used to initialize superposition of the inputs and make a

change of basis for X-basis measurement. X gate is comparable to NOT logic gate

|0i H
1p
2
(|0i+ |1i)

|1i H
1p
2
(|0i � |1i)

Figure 2-1: Examples of how Hadamard gate affect input quantum state.
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in classical. While classical bit have only bit flip, qubit also have phase rotation

operation as Z gate and the combination of them, Y = XZ.

X =

2

40 1

1 0

3

5 , Z =

2

41 0

0 �1

3

5 , Y =

2

40 �i

i 0

3

5 . (2.19)

Hadamard gate usually used to initialize superposition of the inputs and make a

change of basis for X-basis measurement.

|0i X |1i

|1i X |0i
(a) Examples of how X gate affect input quantum state.

|0i Z |0i

|1i Z � |1i
(b) Examples of how Z gate affect input quantum state.

|0i Y i |1i

|1i Y �i |0i
(c) Examples of how Y gate affect input quantum state.

Figure 2-2: Example of how Pauli gates affect input state

As for general unitary operator U(✓,�,�) defined as

U(✓,�,�) =

2

4 cos(✓/2) �ei� sin(✓/2)

ei� sin(✓/2) ei�+i� cos(✓/2)

3

5 , (2.20)

where 0  ✓  ⇡, 0  �  2⇡ and 0  �  2⇡. The another type of quantum gate

that important for quantum computing is two-qubits gate. Without two-qubits gate

that create an entanglement between qubits, quantum computing would no different

to classical computing with fantasy bit. The two-qubits quantum gate usually has

one qubit act as control qubit while another qubit being controlled. A simplest form

16



of a two-qubits gate is controlled-X gate defined as

Cx =

2

6666664

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

3

7777775
. (2.21)

Controlled-X gate flips target qubit if the control qubit is in state |1i and do nothing

otherwise as illustrate in figure 2-3.

|1i • |1i

|0i |1i
(a) Simple illustrate of how controlled-X
affect input state

1p
2
(|0i+ |1i) • 1p

2
(|00i+ |11i)

|0i 1p
2
(|00i+ |11i)

(b) Illustrate of how controlled-X affect
superposition input state such that its
create entanglement between qubits

Figure 2-3: Example of a controlled-X gate.

The general form of two-qubits gate defined as

Cu3(✓,�,�) ⌘

2

6666664

1 0 0 0

0 e�i(�+�)/2 cos(✓/2) 0 �e�i(���)/2 sin(✓/2)

0 0 1 0

0 ei(���)/2 sin(✓/2) 0 ei(�+�)/2 cos(✓/2)

3

7777775
. (2.22)

The two-qubits quantum gate that is important for this work is controlled=Z gate,

which require for create a cluster state entangle. Controlled-Z gate defined as

CZ =

2

6666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

3

7777775
. (2.23)
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The preparation of cluster state including Hadamard gate and controlled-Z gate,

| 1i = H ⌦H|0i|0i =
1

2
(|00i+ |01i+ |10i+ |11i)

| 2i = CZ | 1i =
1

2
(|00i+ |01i+ |10i � |11i). (2.24)

This can easily seen that linear cluster state can be turn into bell pair using addition

Hadamard gate on either qubits,

H ⌦ I| 2i =
1p
2
(|00i+ |11i). (2.25)

Furthermore, Cotrolled-X gate can be decompose into controlled-Z and Hadamard

gates as follow in figure 2-4
• •

= H • H

Figure 2-4: Decomposition of Controlled-X using Controlled-Z and two Hadamard
gates

2.3 Quantum States on a Network and Operations

As a quantum network is a network of quantum devices, we need to study in-

formation teleportation on a network. A network can be represented mathemtically

as a graph, where the devices act as nodes on the graph. In a practical sense, a

quantum network can be a network of qubits, which constitute a processor such as

thoses of IBM, Google, Regetti or other leading quantum technology companies. A

network can also be a network of quantum computers linked remotely; maybe these

quantum computers are located in different countries. Nevertheless, the mathemati-

cal description of a network will be the same, and the operations on the network will

be similar. In this section, for completeness, we provide the basics for a quantum

network focusing on a network graph state and local operations.

A graph is a set of nodes or vertices V together with a set of edges E, and instruc-

tion how the nodes are connected. In a quantum network an edge could have double

18



meaning; one simply implies a connection between two nodes (e.g. two devices, or

two qubits), while the other has stronger requirement as it signifies the entanglement

between the two connecting nodes.

For a quantum network, it is a natural to think of a network itself as a quantum

entity, and therefore, it should have its own quantum states. Borrowing insights from

many-particle systems, a quantum state of the entire network should be constructed

from composite states of its own elements, leading to a tensor product of states. This

is called a cluster state. By default, then the overall Hilbert space of a quantum

network state is given by the tensor product of Hilbet spaces of individual Hilbert

spaces corresponding to each device (we implicitly assume that there are finite number

of nodes, i.e. quantum devices, in a network). Consequently, an operation on a

network state, or graph state, consists of local operation at each node (including the

identity operation), and can be expressed in the form a tensor product as well.

2.3.1 Relevant Graph Theory and Terminology

A graph is denoted by G = (V,E), where V is a set of vertices and E is a

set of edges. Here, we assume that V is a finite set, which can be enumerated as

V = {1, 2, ..., N}, and E ⇢ V ⇥ V denotes a set of connection from a subset of V to

a subset of V . Let lower-case letters denote vertices, e.g. a, b 2 V ; then a pair {a, b}

denotes an edge in E which connects the vertices a and b.

For each vertex a 2 V , we can define a neighborhood of a as

Na = {b 2 V : {a, b} 2 E}, (2.26)

i.e. a neighborhood of a is a set of vertices connected to a by edges. By default,

Na = ?, the empty set when a is isolated in G.

When a vertex a is deleted in a graph G, all the edges connecting to a will be

removed, resulting in a new graph, which will be denoted by G \ a. If U is a subset

of vertices, i.e. U ⇢ V , of a graph G = (V,E), we denote by G \ U the graph that

is obtained from G after deleting all the vertices in the set U , and all corresponding
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Figure 2-5: An example of a graph with seven vertices and five edges.

edges with elements of U . Similarly, if F is a subset of vertices, i.e. F ⇢ E, then

G \ F denotes a resultant graph after removing all edges in F .

For addition of edges, we have G[F = (V,E[F ) and G+F = (V,E+F ), where

A+B denotes a symmetric addition of two sets:

A+B = (A [B) \ (A \B) (2.27)

Let A ⇢ V , then an induced subgraph G[A] is obtained by deleting all vertices

that are not contained in A, together with all the incident edges to A.

As for local operations on a graph, there are two basis operations, namely, a

deletion of a vertex, and a local complementation of a vertex. This follows from the

action of local Clifford operations on graph states [1]. The local complementation at

a 2 V , denoted by ⌧a(G), is obtained by complementing the subgraph of G induced

by the neighborhood Na of a and leaving the rest of the graph unchanged. Precisely,

⌧aG : 7! ⌧a(G) = G+Na. (2.28)

As an illustration, examples of local complementation on a graphs are shown in

20



Figure 2-6a.

(a) Initial resource (b) local complementation on node 0

(c) local complementation on node 1 (d) local complementation on node 2

(e) local complementation on node 3 (f) local complementation on node 4

Figure 2-6: local complementation on nodes

2.3.2 Graph State

Let us consider a set of 2-level systems (qubits) that are labeled by the vertices

V of a graph G. We suppose that the qubits are prepared in some initial state vector

| i and then are coupled according to some interaction pattern represented by the

connecting edges of the graph G. For {a, b} 2 E, the qubits of the two connected
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vertices a and b interact with the Hamiltonian Hab. Hence, the evolution of the state

is according to some (non-local) unitary operator

Uab = e�i'abHab, (2.29)

where 'ab indicates the coupling strength or (with appropriate physical units) the

interaction time.

To construct operations on a quantum network, for simplicity, we assume that

the network consists of qubits as its nodes. The space of operators on a qubit can

be spanned the Pauli matrices together with the 2 ⇥ 2 identity matrix. Let �x, �y

and �z denote the Pauli matrices, and let |0i and |1i denote the eigenvectors of �z

corresponding to the eigenvalues +1 and �1, respectively. We use the superscript

to denote the quantum state at node a, for instances, �a

z
or 1a denote the Pauli �a

operator or the identity operator at node a.

When U is a subset of nodes, the overall quantum state of a quantum network

whose nodes form the set U is given by a tensor product. For example,

|+iU =
O

a2U

|+ia. (2.30)

Here, as usual, |±i = (1/
p
2)[|0i± |1i] Similarly, a operator on a network of nodes is

given by a tensor product, e.g.

�U

y
=

O

a2U

�a

y
. (2.31)

Let Pa denote a local operator at node a, e.g. Pa can be any linear combination of

1, �x, �y and �z, then can operator on a quantum network U is defined as

PU =
O

a2U

Pa. (2.32)

When we consider a quantum state on a network or graph, it is called a graph

state, which is in fact a cluster of quantum states, so sometimes it is also called

a cluster state, with only a slight difference that a cluster state does not need an
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underlying graph structure. A graph state of a quantum network can be viewed from

the interaction between nodes, i.e. the operators Uab can be utilized to construct a

graph state.

Let G = (V,E) be a graph. Then, the graph state |Gi of a graph G is the pure

state with state vector

|Gi =
Y

{a,b}2E

Uab|+iV . (2.33)

A physical interpretation of the graph state |Gi is that the qubit at each vertex is

prepared in the pure state with state vector |+i as eigenvector of �x with eigenvalue

+1. Then the interaction is applied via Uab which is equivalent to mixing the phase

gate to all vertices a, b that are adjacent in G.

2.3.3 Pauli Measurement on Graph State

With the Pauli matrices, we will frequently use the projectors onto the eigenvectors

of the Pauli operators. These are defined as

P a

x,± =
1± �a

x

2
, (2.34)

P a

y,± =
1± �a

y

2
, (2.35)

P a

z,± =
1± �a

z

2
. (2.36)

These Pauli measurement operators can act on a cluster state |Gi, and it can compose

of local operations on a graph, i.e. a deletion and local complementation [6].

In summary, a Pauli measurements on node correspond to a certain sequence of

local complementation on node. For examples, if �x, �y and �z act on a node a, they

are equivalent to

�z ⌘ deleting a node a from G

�y ⌘ performing local complementation on a node a and deleting node a from G

�z ⌘ choosing any node b that connects to node a, then performing local complemen-

tation on node b, following by local complementation on node a, and removing
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node a from G, and lastly, perfoming a local complementation on node b.

Consequently, the local Pauli operations can be expressed algebraically as

P a

z,±|Gi =
1p
2
|z,±ia ⌦ Ua

z,±|G� ai (2.37)

P a

y,±|Gi =
1p
2
|y,±ia ⌦ Ua

y,± |⌧a(G)� ai (2.38)

P a

x,±|Gi =
1p
2
|x,±ia ⌦ Ua

x,± |⌧b0 (⌧a � ⌧b0(G)� a)i , (2.39)

where the operator Ua

P
is corresponding to each Pauli measurement as,

Ua

z,+ = 1 , Ua

z,� = �Na
z

(2.40)

Ua

y,+ =
p
�i�z

Na
, Ua

y,� =
p
+i�z

Na (2.41)

Ua

x,+ =
q

+i�b0
y �

Na\(Nb0
[b0)

z , Ua

x,� =
q

�i�b0
y �

Nb0
\(Na[a)

z . (2.42)

2.4 Measurement-based Network Coding (MQNC)

Originally, measurement-based network coding (MQNC) is inspire by measurement-

based quantum computing (MBQC) using a cluster state as initial resource which

achieve universal quantum gate via sequence of Pauli measurements. The cluster

state defined as

|Gi =
Y

(a,b)2E

Cab

Z
|+i⌦n. (2.43)

Where Cab

Z
= |0ih0|a ⌦ Ib + |1ih1|a ⌦ Zb is the controlled-Z gate acting on qubits a

and b. Pauli measurement is applying in sequence to generate a desire cluster state

topology.
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Chapter 3

Modeling of Measurement-based

Quantum Network Coding on

Superconducting qubits Quantum

Processor

In order to teleport qubit from one place to another in the network, the simple

protocol is entanglement swapping using Bell measurement to create entangle state

between apart qubits. While Measurement-based quantum network coding uses Pauli

measurement to link unconnected qubits together. Both protocol can be model and

implement on a IBM Q’s superconducting quantum computers to address performance

of each protocol in term of state fidelity.

We have chosen IBM Q 20 Tokyo and IBM Q 20 Poughkeepsie due to their connec-

tivity map in figure[3-1] which suit for implement entanglement swapping and linear

cluster state, which is the MQNC where X measurement is performed on inter qubits.

To create two separated crossing-over entangle pairs, instead of begin with 14

qubits initial resource as in [8], we perform the protocol with 6 qubits initial resource

due to the limitation of device connectivity.
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(a) IBM Q 20 Tokyo topology

0

5

10

15

1

6

11

16

2

7

12

17

3

8

13

18

4

9

14

19

(b) IBM Q 20 Poughkeepsie topology

Figure 3-1: IBM Q superconducting qubits quantum computer connectivity topology
[9]

3.1 Entanglement Swapping

Consider a simple situation, two apart qubits needed to be directly connected in

the end of the protocol where there are two inter-connect qubits between them as

illustrate in figure[3-2a].

0 21 3

0 21 3

0 21 3

Initial resource :

Step 2 :

Final state :

(a) Entanglement swapping scheme
(b) Entanglement swapping quantum cir-
cuit

Figure 3-2: Entanglement Swapping [9]

Entanglement swapping protocol was being implemented twice on IBM Q 20 Tokyo

where qubits the {0, 1, 2, 3} are mapped to qubits {0, 5, 6, 11} and {1, 5, 6, 10} using

quantum circuit as in figure [3-2b]. The protocol was implemented for one trial,

repeated for 8192 shots (round), and the result where measurement outcome of qubits

{5, 6} are ’0’ was used to reconstruct density matrix using state-tomography and then
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calculate state fidelity with respect to ideal state,

|�+i = 1p
2
(|00i+ |11i). (3.1)

The result where measurement outcome of qubits {5, 6} are ’0’ was selected because

that there is no require for addition byproduct operation to correct the state after

protocol. The fidelity F ⇡ 0.76 for qubits {0, 11} and F ⇡ 0.66 for qubits {1, 10}.

3.2 Linear Cluster State

In the similar situation as the entanglement swapping protocol, MQNC also ca-

pable of connect distant qubits with series of Pauli measurement as illustrate in

figure[3-3a].

0 21 3Initial resource :

0 21 3Final state :

(a) MQNC on linear cluster state scheme
(b) MQNC on linear cluster state quan-
tum circuit

Figure 3-3: MQNC on linear cluster state [9]

We perform MQNC protocol on linear cluster state for 1 trial using IBM Q 20

Tokyo where qubits the {0, 1, 2, 3} are mapped to qubits {0, 5, 6, 11} and {1, 5, 6, 10}

using quantum circuit as in figure [3-3b]. The result which measurement outcome of

qubits {5, 6} are ’0’ was selected for reconstruct density matrix using state-tomography.

The fidelity is then calculate with respect to ideal 2 qubits linear cluster state,

|G2i =
1p
2
(|0+i+ |1�i). (3.2)

The fidelity F ⇡ 0.70 for qubits {0, 11} and F ⇡ 0.63 for qubits {1, 10}. The

fidelity result from entanglement swapping and MQNC is close to each other, this
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is to be expected. Because, source of the noise is mainly coming from two-qubits

gate which is the same for implementing on IBM Q devices. Since we need three CZ

gate for construct initial resource for MQNC which require linear cluster state while

entanglement swapping use two CX gate to initialize resource however, entanglement

swapping require Bell measurement which use one addition CX gate to complete the

protocol.

3.3 Butterfly Network

In the realistic situation, the network of quantum repeater may link to each other

in more complex way which can be resulting in contention during the transmission.

A simple demonstration case of such a network is a butterfly network as shown in

figure["butterfly network"] where MQNC become useful in this situation.

3.3.1 Implementation on IBM Q devices

The objective is to connect qubits {0, 5} and qubits {2, 3} as illustrate in figure[3-

4a]. To model butterfly network on IBM Q device, we use IBM Q 20 Tokyo as its

suitability for initialize 6-qubits cluster state without needing of swapping operation.

The qubits used in IBM Q 20 Tokyo are {0, 1, 5, 6, 10, 11} corresponding to qubits

{0, 1, 2, 3, 4, 5} in the figure[3-4a] respectively.

0 21

53 4

0 21

53 4

(a) 6-qubits cluster state (b) 2 crossing-over cluster states

(a) MQNC on Butterfly network resource
(b) MQNC on linear Butterfly network
quantum circuit

Figure 3-4: MQNC on Butterfly network

Quantum circuit for initialize resource and implement MQNC on IBM Q 20 Tokyo

is shown in figure[3-4b]. An initial resource of butterfly network is construct with op-
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erations in time-step 1 - 6. Operation in time-step 8 is to change basis for performing

the X measurement. Time-step 10 is a byproduct operation to correct the final state

where measurement outcome of qubits {5, 6} ({1, 4} in the quantum circuit) are ’1’.

We implement the protocol for twenty trial with and reconstruct 4-qubits density

matrix using state tomography where the fidelity F ⇡ 0.41 ± 0.01. We also obtain

density matrices of each separated pairs using partial trace where F ⇡ 0.57±0.01 for

qubits {0, 11} (figure[3-5c]) and F ⇡ 0.58± 0.01 for qubits {1, 10} (figure[3-5d]).

(a) Expected density matrix of 2-qubits
linear cluster state

(b) Directly created 2-qubits linear clus-
ter state using neighboring qubits

(c) Reconstructed density matrix of
qubits {0, 11}

(d) Reconstructed density matrix of
qubits {1, 10}

Figure 3-5: Density matrices of 2-qubits linear cluster state

3.3.2 Entanglement Verification

In order to investigate the protocol under the current circumstance, we first cal-

culate classical correlation of the created entangled pairs. As shown in figure[3-6], by

using QASM simulator, the ideal result should yield maximally correlation for qubits

pair {0, 11} and {1, 10} and zero correlated for other pairs. However, for actual imple-

mentation of the protocol, the correlation dropping from the ideal case. Nevertheless,

this is to be expected, since the error of preparation, operation and measurement on

qubits are exist.

We then now investigate for how are they entangle. Concurrence is a convention
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(a) Correlation matrix of ideal Bell pair

(b) Correlation matrix of qubits
{0, 1, 10, 11} after protocol and turning
into Bell pair via H operation

Figure 3-6: MQNC on Butterfly network [9]

way to quantify the entanglement of 2-qubits system. The concurrence defined as

C⇢ = max {0,�1 � �2,�3,�4} , (3.3)

where �i; i = 1, 2, 3, 4 are the eigenvalues of R⇢ in the decreasing order. Hermitian

matrix R⇢ =
pp

⇢⇢̃
p
⇢, ⇢̃ = (Y ⌦ Y )⇢⇤(Y ⌦ Y ) and Y is Pauli spin matrix.

pair C(⇢)

Entangled pairs {0, 11} 0.253 ± 0.018
{1, 10} 0.312 ± 0.021

Separable pairs

{0, 10} 0
{0, 1} 0
{10, 11} 0
{1, 11} 0

Table 3.1: Concurrence of each qubits pair after protocol

As expected, in table 3.1, the concurrence of the qubits pair that suppose to be

non-entangle is zero as they can be separable.

Now, we proceed to investigate on how useful of the created entangle pairs. One

of the practical application of the distant entangle pair is to create random cryptog-

raphy key without any local correlation. CHSH test can be used to verify that if the
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produced result has a hidden variable behind the phenomenon or not. The CHSH

inequality follow,

S = hABi � hAB0i � hA0Bi � hA0B0i, (3.4)

where hO1O2i = Tr{O1O2⇢} and A = H,A0 = Z,B = H,B0 = ZHZ.

pair S Value

Entangled pairs {0, 11} 1.165 ± 0.04
{1, 10} 1.235 ± 0.04

Separable pairs

{0, 10} -0.405 ± 0.06
{0, 1} -0.149 ± 0.03
{10, 11} -0.326 ± 0.04
{1, 11} -0.084 ± 0.06

Table 3.2: S value of each qubit pair after the protocol using IBM Q 20 Tokyo

We perform the CHSH test for 8 trials using IBM Q 20 Tokyo and post-selected

the result where measurement outcome of qubit {1, 4} is ’1’. Table 3.2 shows S value

of each qubit pairs, where the pair that expected to be entangle have significant higher

S value than other pairs. However, they fail to violate the CHSH inequality as the

value are not exceed 2. This is not surprising as their fidelity suggest the produced

result.

3.3.3 Noise modeling using QASM simulation

The imperfect of the devices is responsible for the outcome of the MQNC imple-

mentation. We tried to address type of the noise, how strong is it on comparing to

the real devices, and how much does the devices need to improve until the protocol

can produce the practical result.

We simulated the protocol using Qiskit’s QASM simulator which can simulate

noisy devices by specify noise model before execution. A simple noise model that we

use is depolarizing noise channel defined as,

EO(⇢) = (1� ✏)O⇢O† +
✏

2
. (3.5)
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While, the mixed state of two entangled qubits are modeled as rotated Werner state,

⇢W =
4F � 1

3
|G2ihG2|+

1� F

3
I, (3.6)

where I is identity operator and F is the fidelity with respect to |Gi.

Figure 3-7: Simulation of the protocol using Qiskit QASM simulator [9]

The simulation vary probability of an error ✏ of single qubits operation O from

0 to 0.05 (10 times repeated for 101 data point and 1024 shots per point) and total
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error of two qubits gate as two independent error on control and target qubits.

Rotated Werner state violates CHSH inequality when its fidelity F & 0.78 (dashed

line in figure[3-7]) as agree as our simulation data (blue point for {0, 11} and orange

point for pair {1, 10} in figure[3-7]). Furthermore, the data points obtained from

IBM Q 20 Tokyo (triangle point for pair {0, 11} and square point for pair {1, 10}

in figure[3-7]) are fit well with the theoretical and simulation result. The simulation

result suggest that the acceptable error rate ✏ which allow the protocol to violate

CHSH inequality is ✏ ⇡ 1.2% while its also implied that error rate of real data point

has ✏ ⇡ 0.031± 0.001.
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Chapter 4

Quantum Network Analyzer

A quantum network analyzer (QNA) is a simulation software of a quantum net-

work on the platform of web-application. In a current version, QNA will serve as a

tool for visualization of a network of qubits. It is capable of simulating a quantum tele-

portation protocol, such as measurement-based quantum network coding (MQNC).

As mentioned in Section 2.3, a quantum network represents a network of quantum

devices, where each node represents a qubit or a quantum repeater or a quantum

computer. Users can view the simulation, its dynamics, after each local operations,

and they can try it and see it in graphics. Users can also construct any desired

topology of a quantum network, and perform Pauli measurements on any node to

transform the topology of the graph from one to another. The simulation uses classical

operations on graph states that are equivalent to Pauli-measurements in order to

simulate the protocol. Thus, matrix representation grows linearly with the number

of nodes, so that the simulation can be carried out up to thousand quantum nodes.

QNA is aimed to provide an analysis over graph states for both ideal and noisy cases.

For a noisy case, the noise of operation can view as a success probability of operation,

i.e. fluctuation can be added to Pauli measurement operators.

Ideally, users can choose any pairs on a graph network. Then QNA will give an

analysis of possible path with series of operations that minimizes the resource used

for achieve the final desired topology. This part is still a work in progress, as it

relates to quantum control theory, and trajectory optimization. Both of these topics
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are relatively new and being investigated extensively in literature [3, 11].

4.1 Framework

In this section, we aim to provide information about clickable application version

of QNA using MQNC.

In order to classically simulate the MQNC protocol, we have to represent a cluster

state in terms of a graph state. Fortunately, graph theory has operations equivalent to

Pauli measurements. This is achieved by a series of local complementation and dele-

tion on nodes as detailed in Section 2.3.2. We use python as programming language

back-end. Networkx package represent the quantum network and using alcpack pack-

age to handle local complementation operations. The most difficult part is to create

a front-end of the application which allows for visualization and users to interact with

the quantum network. Dash is a python package that utilizes flask, a light weight

python server package, and cytoscape JavaScript, an interactive network visualiza-

tion together. We can easily create an web application with dash as a front-end and

networkx combines with alcpack as a back-end.

4.2 Capability

QNA can generate a random geometry of a graph up to 200 nodes, comparing

to the QASM simulator which allows to simulate a quantum network of around 20

nodes or up to 32 qubits using IBM Q QASM Simulator on cloud server. This is a

significant improvement in terms of a size of the network. However, the drawback is

that we cannot simulate the protocol with noise to evaluate the protocol in terms of

a noise resiliency.
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(a) The graph before applying Y -
measurement on white node

(b) The graph after applying Y -
measurement on white node

Figure 4-1: Y -measurement on graph state

4.3 Entanglement Recreation

One can use QNA to reproduce the results of X-measurements on a bottleneck

of the butterfly network to create two crossing-over entangled pairs following the

procedure below.

1. Assuming initial six qubits in a butterfly network as in figure 4-2a where the

qubits {0, 1} are the bottleneck nodes. The goal is to generate direct entangle-

ment link for pairs {2, 3} and {4, 5}.

2. The first X-measurement is performed on the qubits {0}, while the qubit {3}

is selected as a feed-forward target qubit, as illustrated in a figure 4-2b and

resulting in figure 4-2c.

3. The second X-measurement is performed on the qubit {1}. Here, again the

qubit {3} is selected as a feed-forward target qubit as illustrated in figure 4-2d.

Thus, the goal is achieved as shown in figure 4-2e.
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(a) Initial resource
(b) X-measurement on node 0 and feed-
forward target is node 3

(c) The resulting network after X-
measurement on node 0

(d) X-measurement on node 1 and feed-
forward target is node 3

(e) The resulting network after X-
measurement on node 1

Figure 4-2: Creation of 2 crossing-over entangle pair using sequence of X-
measurement
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Chapter 5

Conclusion

In the quest of establishing a quantum internet, minimization of the resource used

is one of the main interest in this quest. Our research focused on investigating of the

performance of measurement-based quantum network coding (MQNC), the protocol

that is capable to overcome a contention problem in order to minimize time to link

to distant nodes in a complex quantum network. MQNC uses local Pauli measure-

ments instead of Bell-measurements which allow the protocol to have more flexibility

in terms of transforming topology of a quantum network. As quantum computing

and quantum communication are being realized more practically in research and ap-

plications, investigation on a quantum network has attracted increasing interests and

become a vibrant and active field.

We implemented MQNC on a superconducting quantum processor to evaluate the

quality of the entangled states that the protocol can generate. The two crossing-over

qubits of a linear cluster state have fidelity F ⇡ 0.57 ± 0.01 and F ⇡ 0.58 ± 0.01,

which are still lower than desirable. After turning a linear cluster state to a Bell-pair,

the CHSH experiment showed that the S value of the generated Bell pairs did not

exceed 2 in order to demonstrate a violation of the CHSH inequality. This implies

that the desired entanglement is not guaranteed. However, the concurrence of each

pair showed that entanglement possibly occurs in the generated Bell pairs. A main

reason for this entanglement prevent can be accounted for by noise in the system.

Our simulation suggested that MQNC could distribute usable Bell-pairs over a
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bottleneck network when the one-qubit error rate ✏ < 1.2%. This imposes upper

bound on noise in a device which will allow the implementation of MQNC on the

network. Unfortunately, for the device used in this work, the one-qubit error rate is

approximately ✏ ⇡ 3.1%. In the future, such noise can be mitigated or suppressed,

and our MQNC can be realized a real quantum network.

Based on local measurements and graph states of a quantum network, we have

created a quantum network analyzer (QNA), a software which can serve as a useful

tool for quantum network education with a nice interface. Thus far, QNA has fea-

tures to operate specific local measurements, and display graphic representation of a

quantum network. We will continue to improve it to analyze a quantum network such

as the effect of noise from a single node on the network state, or an optimal control

sequence to yield a desirable entangled pair. This is work in progress.

We hope that our research can contribute to the quest to build a quantum internet

in the near future.

39



Bibliography

[1] A. Bouchet. Recognizing locally equivalent graphs. Discrete Mathematics,

114(1):75 – 86, 1993.

[2] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum repeaters: the role of

imperfect local operations in quantum communication. Physical Review Letters,

81(26):5932, 1998.

[3] S. Cong. Control of Quantum Systems: Theory and Methods. Wiley, 2014.

[4] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on

entanglement purification. Phys. Rev. A, 59:169–181, Jan 1999.

[5] A. G. Fowler, D. S. Wang, C. D. Hill, T. D. Ladd, R. Van Meter, and L. C. L. Hol-

lenberg. Surface code quantum communication. Phys. Rev. Lett., 104(18):180503,

May 2010.

[6] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. V. den Nest, and H. J. Briegel.

Entanglement in graph states and its applications, 2006.

[7] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D.

Lukin. Quantum repeater with encoding. Phys. Rev. A, 79(3):032325, Mar 2009.

[8] T. Matsuo, T. Satoh, S. Nagayama, and R. Van Meter. Analysis of measurement-

based quantum network coding over repeater networks under noisy conditions.

Phys. Rev. A, 97:062328, Jun 2018.

40



[9] P. Pathumsoot, T. Matsuo, T. Satoh, M. Hajdušek, S. Suwanna, and R. Van Me-

ter. Modeling of measurement-based quantum network coding on a supercon-

ducting quantum processor. Phys. Rev. A, 101:052301, May 2020.

[10] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum

computation on cluster states. Phys. Rev. A, 68:022312, Aug 2003.

[11] L. Viola, E. Knill, and S. Lloyd. Dynamical decoupling of open quantum systems.

Phys. Rev. Lett., 82:2417–2421, Mar 1999.

[12] M. Zwerger, A. Pirker, V. Dunjko, H. J. Briegel, and W. Dür. Long-range big

quantum-data transmission. Phys. Rev. Lett., 120:030503, Jan 2018.

41


