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I 
 

 

Abstract 

 

Vertical Electrical Sounding (VES) method is an electrical method of 

geophysics prospecting that widely used to image the shallow subsurface 

resistivity structure with a typical depth of investigation less than 1 km. The 

injecting current and the measured voltage acquired via electrode arrays will be 

transferred to apparent resistivity as the data of the investigation to obtain the 1D 

resistivity beneath the investigation area. For the investigation area where several 

VES stations are conducted, the 1D resistivity inversion is usually performed 

individually for each station. However, the obtained 1D resistivity model can 

totally differs for the nearby station due to limitation of the 1D inversion.  

This research interest is therefore to integrate the nearby VES sites into the 

inversion with the assumption that the geological structure would not have the 

rough change. I have developed the 1-D VES inversion code base on Occam's 

inversion with adding the lateral constraint into the objective function of the 

optimization. The lateral constraint can be considered by modifying the 

roughness operator to also incorporate the nearby resistivity model of other VES 

sites. The system of the inversion is also modified to gather all the data and model 

parameters of the VES sites simultaneously. The developed code was also applied 

with the real data from geophysics exploration at Sai Yok, Kanchanaburi, 

Thailand. The result shows that the developed VES inversion code can calculate 

the 1-D resistivity model of the acquired data from the study area. 

 

Keyword: Vertical electric sounding, VES, Geophysical prospecting, 1D 

modelling, Lateral constraint. 

 

 

 

 

 



II 
 

 

Acknowledgment 

 

 In this project, I would like to especially thank my advisor “Dr. Puwis 

Amatyakul” for kind supporting and advice in both works and daily life. 

Moreover, I would like to express my special thanks gratitude for more 

information and the warm welcome from all of the people in Geophysics research 

group at Mahidol University. Finally, I would like to thank Faculty of Science 

Alumni Association, Mahidol University scholarship for funding support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 
 

Contents 

Abstract                                                                                                                           I 

Acknowledgement                                                                                                        II 

Table of Contents                                                                                                         III 

List of Figures                                                                                                                 VI 

1. Introduction                                                                                                               1 

1.1.  Motivation                                                                                                          2 

1.2.  Aims and Objectives                                                                                            2 

1.3.  Inverse and Forward Problem                                                                                3 

1.4.  Electrical Survey                                                                                                   3 

1.4.1. Vertical Electrical Sounding (VES)                                                              4 

1.4.1.1. Electrodes Array                                                                                      4 

1.4.1.1.1. Wenner Array                                                                              5 

1.4.1.1.2. Dipole-Dipole array                                                                    7 

1.4.1.1.3. Schlumberger array                                                                     8 

1.5.  Chapter Summary                                                                                                9  

2. Background and Related Works                                                                       10 

2.1.  1D VES Forward modelling                                                                      10 

2.1.1.  Pseudo code for 1D VES Forward modeling                                    12 

2.2.  Inversion Algorithm                                                                                            14 

2.2.1.  1D Occam’s inverse                                                                                              14 

2.2.1.1. Data function                                                                                 15 

2.2.1.2. Model function                                                                         16 

2.2.1.3. Minimization of objective function                                                  17 

2.2.2. Pseudo code for Occam’s inversion                                                                19 



IV 
 

2.3.  Chapter Summary                                                                                             19 

3. Methodology                                                                                                   20 

3.1.  Overall Process                                                                                                 20 

3.2.  Lateral Constraint                                                                                         22 

3.3.  Other Operators Which Has Been Modified                                                         24 

3.3.1. Measured and Predicted data matrices                                            24 

3.3.2. The inverse data covariance matrix (𝐶𝑑
−1)                                                  25 

3.3.3. Jacobian matrix                                                                                  26 

3.4.  Chapter Summary                                                                                      26 

4. Results and Discussion                                                                                     27 

4.1.  Synthetic Experiments                                                                                             27 

4.1.1. Synthetic case I : 2 layers                                                                28 

4.1.1.1. Joint 2 stations                                                                                               28 

4.1.1.1.1. Synthetic data and model                                                 28 

4.1.1.1.2. Inversion result                                                                 29 

4.1.1.2. Joint 6 stations                                                                                              32 

4.1.1.2.1. Synthetic data and model                                                 32 

4.1.1.2.2. Inversion result                                                                 33 

4.1.1.3. Joint 9 stations                                                                                               36 

4.1.1.3.1. Synthetic data and model                                                 36 

4.1.1.3.2. Inversion result                                                                 37 

4.1.2. Synthetic case II : 6 layers                                                                41 

4.1.2.1. Joint 2 stations                                                                                               41 

4.1.2.1.1. Synthetic data and model                                                 41 

4.1.2.1.2. Inversion result                                                                 42 

4.1.2.2. Joint 6 stations                                                                                              45 

4.1.2.2.1. Synthetic data and model                                                 45 

4.1.2.2.2. Inversion result                                                                 46 

4.1.2.3. Joint 9 stations                                                                                               49 



V 
 

4.1.2.3.1. Synthetic data and model                                                 49 

4.1.2.3.2. Inversion result                                                                 51 

4.1.3. Synthetic case III : 10 layers                                                                55 

4.1.3.1. Joint 2 stations                                                                                               55 

4.1.3.1.1. Synthetic data and model                                                 55 

4.1.3.1.2. Inversion result                                                                 56 

4.1.3.2. Joint 6 stations                                                                                              59 

4.1.3.2.1. Synthetic data and model                                                 59 

4.1.3.2.2. Inversion result                                                                 61 

4.1.3.3. Joint 9 stations                                                                                               64 

4.1.3.3.1. Synthetic data and model                                                 64 

4.1.3.3.2. Inversion result                                                                 66 

4.2.  Real Experiment                                                                                       70 

4.2.1. Inversion result                                                                                   71 

4.3.  Discussion and Conclusion                                                                           74  

5. Summary                                                                                                         75 

References                                                                        76 

 

 

 

 

 

 

 

 

 

 



VI 
 

List of Figures 

1.1. Inversion process                                                                                                    3 

1.2. Wenner array                                                                                                                             5 

1.3. Dipole-dipole array                                                                                               7 

1.4. Schlumberger array                                                                                        8 

3.1. Position of adding the Lateral constraint                                                             20 

3.2. Inversion process with Lateral constraint                                                     21 

4.1. Synthetic model of 2 layers case of 2 station                                              28 

4.2. Resistivity transform of synthetic 2 layers case joint with 2 station         29 

4.3. Resistivity model of synthetic 2 layers case joint with 2 station                 30 

4.4. Calculated model of 2 layers case of 2 station                                               31 

4.5. Synthetic model of 2 layers case of 6 station                                              32 

4.6. Resistivity transform of synthetic 2 layers case joint with 6 station         33 

4.7. Resistivity model of synthetic 2 layers case joint with 6 station                 34 

4.8. Calculated model of 2 layers case of 6 station                                               35 

4.9. Synthetic model of 2 layers case of 9 station                                              36 

4.10. Resistivity transform of synthetic 2 layers case joint with 9 station         38 

4.11. Resistivity model of synthetic 2 layers case joint with 9 station                 39 

4.12. Calculated model of 2 layers case of 9 station                                               40 

4.13. Synthetic model of 6 layers case of 2 station                                              41 

4.14. Resistivity transform of synthetic 6 layers case joint with 2 station         42 

4.15. Resistivity model of synthetic 6 layers case joint with 2 station                 43 

4.16. Calculated model of 6 layers case of 2 station                                               44 

4.17. Synthetic model of 6 layers case of 6 station                                              45 

4.18. Resistivity transform of synthetic 6 layers case joint with 6 station         46 

4.19. Resistivity model of synthetic 6 layers case joint with 6 station                 47 

4.20. Calculated model of 6 layers case of 6 station                                               48 

4.21. Synthetic model of 6 layers case of 9 station                                              50 

4.22. Resistivity transform of synthetic 6 layers case joint with 9 station         52 

4.23. Resistivity model of synthetic 6 layers case joint with 9 station                 53 

4.24. Calculated model of 6 layers case of 9 station                                               54 

4.25. Synthetic model of 10 layers case of 2 station                                              55 

4.26. Resistivity transform of synthetic 10 layers case joint with 2 station         56 

4.27. Resistivity model of synthetic 10 layers case joint with 2 station                 57 

4.28. Calculated model of 10 layers case of 2 station                                               58 

4.29. Synthetic model of 10 layers case of 6 station                                              60 



VII 
 

4.30. Resistivity transform of synthetic 10 layers case joint with 6 station         61 

4.31. Resistivity model of synthetic 10 layers case joint with 6 station                 62 

4.32. Calculated model of 10 layers case of 6 station                                               63 

4.33. Synthetic model of 10 layers case of 9 station                                              65 

4.34. Resistivity transform of synthetic 10 layers case joint with 9 station         67 

4.35. Resistivity model of synthetic 10 layers case joint with 9 station                 68 

4.36. Calculated model of 10 layers case of 9 station                                               69 

4.37. The study area at Sai Yok, Kanchanaburi, Thailand.                                 70 

4.38. The geological map from the study area.                                                                 70 

4.39. Resistivity transform of observed data case joint with 6 station                  71 

4.40. Resistivity model of observed data case joint with 6 station                      72 

4.41. Calculated model of observed data case joint with 6 station                       73 

 

 

 



1 
 

 

Chapter 1 

Introduction  

In the present, humans use natural resources which were obtained from 

underground in daily life until industrial. The investigations and excavation 

cost and time for finding underground natural resources are dramatically 

increased following the deepness, according to the reason, the scientific 

suggestion is very important in order to assure the location of resources, 

decrease cost and time. The vertical electric sounding (VES) is one of the 

electrical methods for estimating the resistivity model of the subsurface 

structure by using the unique property of the object that effects to the electrical 

current streamline in the different the medium and measured voltage due to 

subsurface resistivity distribution, electrode spacing and measured voltage on 

the surface can be used to speculate the resistivity model by the inversion 

method. The forward modeling is the process that transforms the resistivity 

model to voltage and current on the surface which is a crucial part of the 

inversion process, consequently, the result from the inversion can be used as 

suggestions for various resources explorations. 
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1.1 Motivation 

The research in the vertical electrical sounding survey (VES) is important 

for shallow geophysical explorations. 1D VES inversion was used for 

generating the subsurface 1D resistivity model from acquired data from VES 

exploration stations. The subsurface resistivity model from the inversion 

system was interpreted to use in other activities such as drilling or building 

which all of that high cost. But the inversion system is a nonlinear problem that 

means same acquired data can generate many subsurface resistivity models 

which can totally different, so, after generating and interpreting the models, the 

user has to select one of the obtained models from the calculation which is 

possible and dependable with the survey location to be the model for using. 

From the reason above the interpretation of obtained models have to use other 

data such as data of geological exploration or obtained models from nearby 

stations in interpretation together. For the investigation area where several 

VES stations are conducted, the 1-D resistivity inversion is usually performed 

individually for each station that makes this method is difficult and taking a 

long time for selecting and comparing. Leading to the motivation of this 

project, if the user can generate the subsurface resistivity models by joint the 

acquired data from nearby stations in the calculation part, the obtained 

subsurface resistivity models will be related together that help to reduce the 

selecting and comparing models time. 

 

 

1.2 Aims and Objectives 

This research aims at a development important component of the inversion 

process by adding the lateral constraint into the inversion process and generate 

a 1D VES inversion code with lateral constraint. The result of this research is 

the 1D Vertical Electrical Sounding (VES) inversion program which was 

added the lateral constraint. This inversion program is expected to be useful in 

both industrial and academic purposes. 
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1.3 Inverse and Forward Problem 

The relation between the model and measured data in a perfect experiment 

is represented by the following equation. 

F(m) = d 

where F is forward modeling operator, m is the model and d is the data. The 

forward problem is to find d from given m and the inverse problem is to find 

m from given d. The inversion process also has forward modeling as a very 

important part, therefore, despite the inversion process is the uppermost 

objective, forward modeling is an objective that cannot be neglected as shown 

by figure 1.1. 

 

 

 

 

 

 

Figure 1.1 : Inversion process 

1.4 Electrical Survey 

Electrical geophysical prospecting methods detect the surface effects 

produced by electric current flow in the ground.  Using electrical methods, one 

may measure potentials, currents, and electromagnetic fields that occur 

naturally or are introduced artificially in the ground.  In addition, the 

measurements can be made in a variety of ways to determine a variety of 

results.  There is a much greater variety of electrical and electromagnetic 

techniques available than in the other prospecting methods, where only a single 

field of force or anomalous property is used.  Basically, however, it is the 

enormous variation in electrical resistivity found in different rocks and 

minerals that makes these techniques possible 
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1.4.1 Vertical Electrical Sounding (VES) 

The VES method is a geophysical electrical survey technique used to probe 

the Earth. It is one of the popular surveying methods for imaging the shallow 

subsurface resistivity structure because of its convenience and its low 

environmental impact compared to other methods. The source of the VES 

method is direct current. When a direct current (I) is injected into the ground 

of the area of interest, the potential value (V) is measured. Then, the measured 

data are used to calculate the apparent resistivity, which is obtained by 

assuming that the subsurface is homogenous. From Ohm’s law which states 

that the resistance in the area of interest is V/I, we can obtain the resistance 

(R). Then, we multiply the obtained resistivity by a factor called the “geometric 

factor” to find the apparent resistivity. The geometric factor depends on the 

chosen type of electrode array. 

 

1.4.1.1 Electrodes Array 

The electrodes array is the arrangement of the electrodes in the profile and 

generally consists of four electrodes. There are three favorite electrode arrays, 

namely the Wenner, Dipole-Dipole, and Schlumberger array. Each electrode 

array senses the underground structure difficultly. Therefore choosing the 

electrode array will depend on the interesting features underground. 
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1.4.1.1.1 Wenner Array 

 The Wenner array is the electrode array used to study the subsurface 

structure in which vertical difference. Generally, the electrodes of the Wenner 

array will be arranged as shown in Figure 1.2. The characteristic of the Wenner 

array is the equally-separated distance (na) between each electrode. 

 

 

 

 

 

 

Figure 1.2 : Wenner array 

The apparent resistivity can be determined from 

𝜌𝑎 = 2𝜋𝑛𝑎
𝑉𝑀𝑁

𝐼
 

where the 2𝜋𝑛𝑎 is the geometric factor of the Wenner array, n is an integer and 

𝑉𝑀𝑁 is the potential difference between electrode M and N. The procedure of 

obtaining the geometric factor is starting from Ohm’s law, 

𝐸 = 𝜌𝐽 = 𝜌
𝐼

4𝜋𝑟2
𝑟̂ 

where ρ is resistivity or inverse of conductivity σ, r is the distance from the 

source to the point of interest, E is the electric field and J is the current density. 

When the current is injected into the homogeneous earth, the electric field will 

differ in hemispherical shape into the earth. Thus, can be rewritten in the form 

of potential as,  

𝑉(𝑟) = ∫ 𝐸 𝑑𝑟
∞

𝑟

= ∫
𝜌𝐼

2𝜋𝑟2
 𝑑𝑟

∞

𝑟
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Solving equation above, the potential is obtained in the form of 

𝑉(𝑟) =
𝜌𝐼

2𝜋𝑟
 

We can find the potential at any the electrode point by combining the 

potential generated from A and B which is equal to 

𝑉𝑝 =
𝜌𝐼

2𝜋
(

1

𝐴𝑃
−

1

𝑃𝐵
) 

where AP is the distance between electrode A and point P, PB is the distance 

between electrode B and point P. So, the potential difference between electrode 

M and N is then equal to 

VMN =  VM − VN =  
Iρ

2π
[(

1

AM
−

1

MB
) − (

1

AN
−

1

NB
)] 

Thus we can find the resistivity from 

ρ =  
VMN

I
K 

where 

K = 2π [(
1

AM
−

1

MB
) − (

1

AN
−

1

NB
)]

−1

 

and K is defined as the geometric factor which depends on the electrode 

configuration. For the Wenner array, the geometric factor is 

K = 2π [(
1

na
−

1

2𝑛𝑎
) − (

1

2na
−

1

na
)]

−1

= 2𝜋𝑛𝑎 

Can calculate the apparent resistivity of this array from 

ρ𝑎 =  2𝜋𝑛𝑎
VMN

I
 

We can use the same equation to calculate the apparent resistivity of the 

other electrode arrays, but with a difference K factor. 
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1.4.1.1.2 Dipole-Dipole array 

The Dipole-Dipole array is used for a vast surveying area. It can be used to 

detect the difference in the horizontal underground structure. In general, the 

dipole-dipole configuration is shown in Figure 1.3. 

 

 

 

 

 

Figure 1.3 : Dipole-dipole array 

The outstanding features of the Dipole-Dipole array are the sequence and 

range of current electrodes. Electrode A is placed close to electrode B with 

electrode spacing (a) which is the same as the electrode spacing between the 

potential electrodes M and N. If we increase the electrode spacing between B 

and M, we will get the apparent resistivity at greater depth. We can calculate 

the apparent resistivity of this array from 

ρ𝑎 =  
VMN

I
𝜋𝑎𝑛(𝑛 + 1)(𝑛 + 2) 
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1.4.1.1.3 Schlumberger array 

The Schlumberger array, the most popular electrode array, can detect the 

change of the structure in both vertical and horizontal directions. However, it 

is not as clear as the vertical direction in the Wenner array and horizontal 

direction in the Dipole-Dipole array. The Schlumberger configuration is shown 

in Figure 1.4. 

 

 

 

 

 

 

Figure 1.4 : Schlumberger array 

The outstanding feature of Schlumberger is that the electrode spacing of 

potential electrodes M and N of the entire survey is equal to a. Moreover, if we 

increase the electrode spacing between electrode A and M, and electrodes B 

and N, it is equivalent to the apparent resistivity at great depth. The apparent 

resistivity of this array can be calculated from. 

ρ𝑎 =  
VMN

I
𝜋

𝑏(𝑏 + 𝑎)

𝑎
≈

VMN

I
𝜋

𝑏2

𝑎
, if 𝑎 ≪ 𝑏 
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1.5 Chapter Summary 

In this research, the development of inverse modeling of kind of one-

dimension Vertical Electrical Sounding (VES) by adding the lateral constraint 

is the main topic. The Vertical Electrical Sounding method is famous in 

shallow exploration case. The potential obtained from the electrode’s 

measurement after injection of the current into the earth is calculated to image 

the one-dimension subsurface resistivity model. In the calculation, the one-

dimension resistivity inversion is usually performed individually for each 

station. But, all of the obtained one-dimension resistivity models can totally 

different for the nearby station because of the limitation of one-dimension 

inversion. So, the lateral constraint is applied to the objective function of the 

optimization of inverse modeling for complying with the acquired data from 

nearby Vertical Electrical Sounding station together to develop the obtained 

model. The production of this work and some further works is one-dimension 

Vertical Electrical Sounding inversion with lateral constraint program which 

is important in shallow resources exploration and study of earth structure. 
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Chapter 2 

Background and Related Works  

Forward and inverse modeling of one-dimension Vertical Electrical 

Sounding survey uses several relevant Mathematics and Physics concepts. This 

chapter will discuss these concepts, the approach for this research, to a one-

dimension inversion system for co-calculation of the acquired data from nearby 

VES station to get model developed.  

 

 

2.1 1D VES Forward modelling 

Because VES forward modeling was calculated from difficult mathematic 

such as Bessel’s function and infinite integral, it is a non-linear problem. In 

this project, I will focus on the inversion part, so forward modeling will be 

reduced into Schlumberger VES forward modeling. Schlumberger VES is 

different from other configurations that we assume that spacing between two 

measuring voltage electrodes is very small compared to the spacing between 

current electrodes. The main calculation in the forward modeling is resistivity 

transform function and its deconvolution. The deconvolution of the parameter 

is called “Gosh filter”. 

The forward modeling algorithm is an essential part of the inversion 

program. It is used to calculate the response (ρa) from the known model 

structure (ρ). The forward algorithm of VES can be calculated from 

Steafanescu’s equation of electrical potential. Potential on the surface of the 

layered earth at distance r from a point current source I is given as 

ρa(r) = r2 ∫ T(λ)J1(rλ)λdλ
∞

0
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when ρa is apparent resistivity, J1 is the first-order Bessel’s function of the first 

kind, r is the half-electrode spacing or AB/2, λ is electrode parameter or 1/r, T1 

is the resistivity transform that can be calculated recursively by applied 

Hankel’s inversion as 

T(λ) = ∫
1

r
ρa(r)J1(rλ)dλ

∞

0

 

For a succession of N layers, can write the resistivity transform depends 

only on that layer’s resistivity and thickness, as well as on the value of the 

transform for the subjacent layer. Starting from the last layer, with TN = ρN, it 

is possible to successively compute the transforms TN−1, … , T2, T1 via the 

recursive relation as 

Ti(λ) =
ρi(1 − e−2λhj) + Ti+1(1 + e−2λhj)

ρi(1 + e−2λhj) + Ti+1(1 − e−2λhj)
 

When ρi is true resistivity (ρ1, ρ2, … , ρN), hj is thickness (h1, h2, … , hN−1) by 

the last layer being considered infinitely extended. 

For a two-layer section with top layer A underlain by substratum B, 

TAB(r) = ρA

1 + kABe−2hA/r

1 − kABe−2hA/r
 

When r =
1

λ
 and k =

ρn−ρ𝑛−1

ρ𝑛+ρ𝑛−1
 so can write that kAB =

ρB−ρ𝐴

ρ𝐵+ρ𝐴
 

The resistivity transform of a section of any number of the layer can be deduced 

from the following iterative. 

Tn(r) =
T′AB + Tn−1

1 +
T′ABTn−1

ρA
2

 

When T′AB is resistivity transform of a two layer section for special case by  

kAB = -1 
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The application of equations above can be demonstrated by deriving an 

expression for T for a three-layer section ABC, where A is the top layer, B the 

intermediate layer and C the substratum as 

TABC(r) =
T′AB + TBC

1 +
T′ABTBC

ρA
2

 

When TBC(r) = ρB
1+kBCe−2hB/r

1−kBCe−2hB/r 

By this forward modeling use the digital filter coefficients of GOSH’s filter in 

calculation. Then, can calculate the apparent resistivity as 

ρa(r) = r2 ∫ T(λ)J1(rλ)λdλ
∞

0

 

And plot the apparent resistivity to pseudo dept. 
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2.1.1 Pseudo code for 1-D VES Forward modeling 

Import Synthetic data or Observed data, Electrode spacing (L) and layers 

thickness (h) 

Use Ghosh’s digital Filter 

Assign new L = 1/L 

Calculate the dimension of distance (s),  

𝑠𝑖𝑗 = 𝑒−2ℎ𝑖𝐿𝑗  

Calculate the reflection coefficient (k), 

𝑘𝐴𝐵 =
𝜌𝐵 − 𝜌𝐴

𝜌𝐵 + 𝜌𝐴
 

For range of h 

Calculate the resistivity transform of n layer section (Tn), 

Tn(r) =
T′AB + Tn−1

1 +
T′ABTn−1

ρA
2

 

end 

For Range of L 

 Calculate the apparent resistivity (𝜌𝑎), 

ρa(r) = r2 ∫ T(λ)J1(rλ)λdλ
∞

0

 

End 

 

 

 

 

 

 



14 
 

2.2 Inversion Algorithm 

Inversion is a way to find a possible model of the earth that can generate 

predicted measurements that are similar to observations. It is the inverse of the 

forward modeling. In forward modeling, a given model is inputted and the 

predicted responses are generated. In an inversion, the observed data is inputted 

and the output is a model that generates data fitting the obtained data. 

There are many inversion methods used in geophysics, such as the Quasi-

Newton method (Trip et al., 1984), non-linear conjugate gradient (Newman et 

al., 2000), Levenberg-Marquardt method (Trip et al., 1984) and Occam’s 

inversion (Constable et al., 1987). 

Occam’s inversion technique has been proposed by Constable et al. (1987) 

for solving the 1D resistivity inverse problem. Occam’s inversion takes less 

iteration but uses more calculation time per iteration and more computer 

memory than other methods. Due to stability, in this project use Occam’s 

inversion.  

 

2.2.1 1D Occam’s inverse 

The philosophy of the Occam approach is to seek the smoothest or 

minimum structure model subject to a constraint on the misfit (see Constable 

et al., 1987; Siripanvaraporn & Egbert, 2000), which can be mathematically 

transformed into a problem of minimization of an objective function W, 

W = Φm + λ−1Φd 

when Φ𝑚 is the model function. Φ𝑑 is the data function. Here, we want to 

minimize Φ𝑚 subject to Φ𝑚 = 0. 𝜆 is the Lagrange multiplier trade-off 

parameter between the model and data functions. 
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2.2.1.1 Data function 

Data function is defined as  

Φ𝑑 = 𝜒𝑑
2 − 𝜒𝑑∗

2  

when 𝜒𝑑
2 is the data misfit and 𝜒𝑑∗

2 is the desired data. When the data misfit 𝜒𝑑
2 

is reduced to the desired misfit 𝜒𝑑∗
2 , the data function Φ𝑑 = 0. As with the 

least-square problem, 𝜒𝑑
2 represents an average variance between the measured 

data (d) and the numerically restricted data (f) which can be expressed by 

𝜒𝑑
2 = ∑(

𝑑𝑖 − 𝑓𝑖
𝜖𝑖

)
2𝑁

𝑖=1

 

when 𝜖𝑖 is the error of measured data 𝑑𝑖 and N is the number of data. Can 

expressed the data misfit in matrix form as, 

𝜒𝑑
2 = (𝑑 − F[𝑚])T𝐶𝑑

−1(𝑑 − F[𝑚]) 

when d is vector containing the measured data. F[𝑚] is a vector containing the 

predicted data generated by the forward modeling from the model vector m (F 

represents the forward modeling operator), 

F[𝑚] =

[
 
 
 
 
𝑓1
𝑓2
𝑓3
⋮
𝑓𝑁]

 
 
 
 

𝑁×1

and 𝑚 = [

𝜌1

⋮
𝜌𝑀

]

𝑀×1

 

when M is the number of model parameters which equal to the total number of 

discretized model blocks. The inverse data covariance matrix can be expressed 

as 

𝐶𝑑
−1 = 𝑊𝑑

T𝑊𝑑 

where 

𝑊𝑑 =

[
 
 
 
1/𝜖1

1/𝜖2

⋱
1/𝜖𝑁]

 
 
 

𝑁×𝑁
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2.2.1.2 Model function 

Here, for Occam’s inversion, the smoothness constraint is assumed 

according to the philosophy of minimum structure. The model function Φ𝑚is 

then estimated by the smoothness of the model represented by the model norm 

𝜒𝑚
2 and defined as an average variance of the model parameter between the 

consecutive discretized blocks.  

  

Φ𝑚 = 𝜒𝑚
2 − 𝜒𝑚∗

2  

𝜒𝑚
2  can be expressed by 

𝜒𝑚
2 = ∑(𝑚𝑖+1 − 𝑚𝑖)

2

𝑀

𝑖=1

 

The model norm can be written in matrix form as, 

𝜒𝑚
2 = (𝑚𝑘+1 − 𝑚0)

T𝐶𝑚
−1(𝑚𝑘+1 − 𝑚0) 

when m0 is the reference prior model, Cm is the model covariance. The model 

roughness or the inverse of the model covariance (𝐶𝑚
−1) operator can write as, 

𝐶𝑚
−1 = ∆𝑧

T𝛥𝑧 

when 𝛥𝑧 which the vertical roughening matrix which operate on a 1D model 

and 𝑀𝑧 is number of model layers.  

𝛥𝑧 =

[
 
 
 
 

0
−1 1

−1 1
⋱ ⋱

−1 1 ]
 
 
 
 

𝑀𝑧×𝑀𝑧
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2.2.1.3 Minimization of objective function 

For Occam’s inversion the objective function can be expressed according 

to the given data function and model as, 

𝑊(𝜆,𝑚) = (𝑚 − 𝑚0)
T𝐶𝑚

−1(𝑚 − 𝑚0) + 𝜆−1[(𝑑 − F[𝑚])T𝐶𝑑
−1(𝑑 − F[𝑚]) − 𝜒𝑑∗

2 ] 

when 𝜒𝑑∗
2 is the desired level of misfit. 

Form the Taylor’s series expansion to linearize F[m]. 

F[𝑚 + Δ𝑚] = F[𝑚] +
𝜕F[𝑚]

𝜕𝑚
Δ𝑚 

Since 𝑚𝑘+1 = 𝑚𝑘 + Δ𝑚, equation above can be written in iterative form, 

F[𝑚𝑘+1] = F[𝑚𝑘] + 𝐽𝑘(𝑚𝑘+1 − 𝑚𝑘), 

when k denotes the iteration number, 𝑚𝑘+1 represents the model at the next 

iteration, and the first derivative 𝐽𝑘 is the Jacobian or sensitivity calculated at 

iteration k and 

𝐽𝑘 ≡
𝜕F[𝑚]

𝜕𝑚
, 

𝐽𝑘 =

[
 
 
 
 
𝐹[𝑚 + 𝜌1]1 − 𝐹[𝑚]1

𝜌1
⋯

𝐹[𝑚 + 𝜌𝑙]1 − 𝐹[𝑚]1
𝜌𝑙

⋮ ⋱ ⋮
𝐹[𝑚 + 𝜌1]𝑁 − 𝐹[𝑚]𝑁

𝜌1
⋯

𝐹[𝑚 + 𝜌𝑙]𝑁 − 𝐹[𝑚]𝑁
𝜌𝑙 ]

 
 
 
 

𝑁×𝑙

 

when 𝑁 is number of data and 𝑙 is number of model layer. 

Get the objective function in iterative form, 

𝑊𝜆 = (𝑚𝑘+1 − 𝑚0)
T𝐶𝑚

−1(𝑚𝑘+1 − 𝑚0) + 𝜆−1 [(𝑑 − F[𝑚𝑘] − 𝐽𝑘(𝑚𝑘+1 −

𝑚𝑘))
T
𝐶𝑑

−1(𝑑 − F[𝑚𝑘] − 𝐽𝑘(𝑚𝑘+1 − 𝑚𝑘)) − 𝜒𝑑∗
2 ]. 

To incorporate the prior model 𝑚0 into the inversion, replace as 

𝑚𝑘+1 − 𝑚𝑘 = (𝑚𝑘+1 − 𝑚0) − (𝑚𝑘 − 𝑚0) 

 



18 
 

The objective function becomes 

𝑊𝜆 = (𝑚𝑘+1 − 𝑚0)
T𝐶𝑚

−1(𝑚𝑘+1 − 𝑚0) + 𝜆−1 [(𝑑̂ − 𝐽𝑘(𝑚𝑘+1 −

𝑚0))
T
𝐶𝑑

−1 (𝑑̂ − 𝐽𝑘(𝑚𝑘+1 − 𝑚0)) − 𝜒𝑑∗
2 ], 

when 𝑑̂ = 𝑑 − F[𝑚𝑘] + 𝐽𝑘(𝑚𝑘 − 𝑚0). 

In order to find the 𝑚𝑘+1 that minimizes the objective function, we 

differentiate equation above with respect to 𝑚𝑘+1 at the stationary point, 

𝜕𝑊𝜆

𝜕𝑚𝑘+1
= 0. 

Hence, the expression of the iterative sequence is 

𝑚𝑘+1 = (𝜆𝐶𝑚
−1 + 𝛤𝑘

𝑚)−1𝐽𝑘
𝑇𝐶𝑑

−1𝑑̂ + 𝑚0, 

when 𝛤𝑘
𝑚 = 𝐽𝑘

𝑇𝐶𝑑
−1𝐽𝑘. 
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2.2.2 Pseudo code for Occam’s inversion 

Import synthetic data or observed data, error of each data 

Assign initial model or m0 Lagrange multiplier (𝜆)  

Calculate the 𝐶𝑚
−1, 𝐶𝑑

−1 and first Jacobian matrix 

Define 𝑚1 by using 𝑚𝑘 = 𝑚0 

for  Range of Lagrange multiplier (𝜆) 

 Choose the 𝜆 that give the lowest data misfit  

end 

Calculate mk+1 first iteration from 

𝑚𝑘+1 = (𝜆𝐶𝑚
−1 + 𝛤𝑘

𝑚)−1𝐽𝑘
𝑇𝐶𝑑

−1𝑑̂ + 𝑚0 

for second iteration to the iteration that 𝑚𝑘+1 satisfy some condition  

Update F[m]  

Calculate new Jacobian matrix 

Find new Lagrange multiplier 

Calculate m k+1 from 

𝑚𝑘+1 = (𝜆𝐶𝑚
−1 + 𝛤𝑘

𝑚)−1𝐽𝑘
𝑇𝐶𝑑

−1𝑑̂ + 𝑚0 

end 

 

2.3 Chapter Summary 

This chapter has discussed background knowledge for the forward 

modeling and inversion process. The content has covered the 1D VES forward 

modeling and 1D VES inversion which used to image the 1D subsurface 

resistivity model. This chapter is preparation for the next chapter in which the 

detail of 1D VES inversion development and lateral constraint will be 

discussed.  

 



20 
 

Chapter 3 

Methodology  

The inverse modeling for one-dimension VES is the synchronization of 

knowledge which had discussed previously. This chapter will explain all 

processes of calculation and adaptation about adding lateral constraint from the 

brief overall process to deep detail of each topic. 

 

3.1 Overall Process 

The calculation and prediction of the subsurface resistivity model of one-

dimensional Vertical Electrical Sounding survey inversion are sophisticated, 

hence, the overall process is stated first to clear the idea methodology of this 

research.  

 

 

 

 

 

 

 

 

Figure 3.1 : Position of adding the Lateral constraint 
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Figure 3.2 : Inversion process with Lateral constraint 

The objective is an adaptation of the optimization in the predicted data 

section of the inversion system by modifying the model covariance (𝐶𝑚) or 

model roughness (𝐶𝑚
−1) of 1D VES inversion. 

Normally, the model covariance (𝐶𝑚) or roughness operator (𝐶𝑚
−1) of 1D 

VES inversion is calculated only z-dimension or the vertical, on the other hand, 

x-dimension is not calculated because the 1D VES acquired data is usually 

performed individually for each station. So, the 1D VES inversion predict the 

earth’s model to multiple layers in vertical and obtain the result is the 

subsurface resistivity model which show the predicted layer earth’s model but 

the obtained model can totally differ for the obtained model from 1D VES for 

the nearby station because of the limitation of 1D inversion. 

This research interest is integrating the data of nearby VES sites station 

into the model covariance (𝐶𝑚) or model roughness (𝐶𝑚
−1) of 1D VES inversion 

by with the assumption that the geological structure would not have the roughly 

change or don’t differ together too much. 

Due to the model roughness is important for lateral constraint, so this 

focuses on the modifying of the model roughness which integrates the acquire 

data of nearby 1D VES site stations and called Lateral constraint. 
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3.2 Lateral Constraint 

From the 1D VES inversion which the acquired data from the investigation 

is usually performed individually for each station, so, the model covariance 

(𝐶𝑚) or model roughness (𝐶𝑚
−1) can be predicted the model only z-dimension. 

The model roughness or the inverse of the model covariance (𝐶𝑚
−1) operator of 

1D VES inversion that previously mentioned can write as, 

𝐶𝑚
−1 = ∆𝑧

T𝛥𝑧 

when 𝛥𝑧 which the vertical roughening matrix which operate on a 1D model. 

Thus, from the idea that integrating the acquired data of nearby 1D VES 

site stations into the optimization part of the 1D inversion system to weigh the 

obtained model from data of nearby stations, the model roughness has to 

modify to calculate other stations together. Moreover, the updated model 

roughness has to can calculate and predict the subsurface resistivity model at 

horizontal or x-dimension of the stations. 

 

From the reasons above, the model roughness that can calculate and predict 

the model from z-dimension and x-dimension or vertical and horizontal side of 

the station is the model roughness of the 2D inversion system. Thus, the model 

roughness from the 2D inversion system is adapted to the 1D inversion system 

can write as 

𝐶𝑚
−1 = ∆𝑥𝑇∆𝑥 + ∆𝑧𝑇∆𝑧 

when 𝐶𝑚
−1is model roughness or the inverse of the model covariance operator 

which is introduced in Degroot-Hedlin & Constable (1990) and Puwis er al. 

(2010), ∆𝑥 is horizontal roughening matrix and ∆𝑧 is the vertical roughening 

matrix which both are the operate on a 2D model with an assumed y strike 

direction.  
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For the adaptation of the model roughness of 2D inversion into the 1D 

inversion so, the new model roughness which is used for adding lateral is 

interpreted like the 2D by data of the horizontal come from the nearby stations. 

For the example of the 1D model that joint with the 1D model of nearby 

stations is consisting of 𝑀𝑥element in the x-direction or the number of joint 

stations, 𝑀𝑧elements in z-direction and 𝑀 = 𝑀𝑥 × 𝑀𝑧, ∆𝑥 can be expressed as 

 

𝛥𝑥 =

[
 
 
 
 
−1 … 1 …

−1 … 1 …
⋱ ⋱

… −1 … 1
0 ]

 
 
 
 

𝑀×𝑀

 

where 0 is 𝑀𝑧 × 𝑀 zero matrix. The vertical roughening matrix (∆𝑧) can 

rewrite as 

𝛥𝑧 =

[
 
 
 
𝛥1

𝛥2

⋱
𝛥𝑀𝑧]

 
 
 

𝑀×𝑀

 

where 𝛥𝑖 is the 𝑀𝑥 × 𝑀𝑥 vertical roughening sub-matrix for the column of grid 

𝑖 as, 

𝛥𝑖 =

[
 
 
 
 

0
−1 1

−1 1
⋱ ⋱

−1 1 ]
 
 
 
 

𝑀𝑥×𝑀𝑥
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3.3 Other Operators Which Has Been Modified 

After the adaptation of the model roughness, many operators of the 1D 

VES inversion system have to modify to a new form for calculating many 

stations together. 

 

3.3.1  Measured and Predicted data matrices 

For 1D VES inversion process, the measured data (𝑑) and predicted data 

(𝐹[𝑚]) were contained in matrices form as 

𝑑 =

[
 
 
 
 
𝜌1

𝜌2

𝜌3

⋮
𝜌𝑁]

 
 
 
 

𝑁×1

and  F[𝑚] =

[
 
 
 
 
𝑓1
𝑓2
𝑓3
⋮
𝑓𝑁]

 
 
 
 

𝑁×1

 

when 𝑑 is a vector containing the measured data. F[𝑚] is a vector containing 

the predicted data generated by the forward modeling and 𝑁 is the number of 

acquired data. 

 For the co-calculation many stations in 1D VES inversion, the measured 

data and predicted data matrices rewrite as 

𝑑 = [

𝑑1

𝑑2

⋮
𝑑𝑛

]

(𝑛𝑁)×1

and  F[𝑚] =

[
 
 
 
F[𝑚𝑑1

]

F[𝑚𝑑2
]

⋮
F[𝑚𝑑𝑛

]]
 
 
 

(𝑛𝑁)×1

 

when 𝑛 is the number of stations in the calculation, 𝑑 is the vector containing 

the measured data of each station and F[𝑚] is a vector containing the predicted 

data of each model’s stations which expressed as  

𝑑𝑖 =

[
 
 
 
 
𝜌1

𝜌2

𝜌3

⋮
𝜌𝑁]

 
 
 
 

𝑁×1

and  F[𝑚𝑑𝑖
] =

[
 
 
 
 
𝑓1
𝑓2
𝑓3
⋮
𝑓𝑁]

 
 
 
 

𝑁×1
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3.3.2 The inverse data covariance matrix (𝐶𝑑
−1) 

The inverse data covariance matrix of 1 station for 1D inversion process 

can be obtained from 

𝐶𝑑
−1 = 𝑊𝑑

T𝑊𝑑 

where the inverse data covariance sub-matrix (𝑊𝑑) 

 For co-calculation of many stations, the inverse data covariance matrix use 

the same form but the inverse data covariance sub-matrix (𝑊𝑑) can rewrite that 
 

𝑊𝑑 =

[
 
 
 
 
𝑊𝑑1

𝑊𝑑2

⋱
𝑊𝑑𝑛]

 
 
 
 

𝑛𝑁×𝑛𝑁

 

when 𝑛 is number of stations, 𝑊𝑑𝑖
 is the inverse data covariance sub-matrix of 

each stations write as 
 

𝑊𝑑𝑖
=

[
 
 
 
1/𝜖1

1/𝜖2

⋱
1/𝜖𝑁]

 
 
 

𝑁×𝑁

 

when 𝜖𝑖 is the error of measured data 𝑑𝑖 and N is the number of data. 
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3.3.3 Jacobian matrix   

The sensitivity or Jacobian matrix at iteration k of 1 station for 1D VES 

inversion system obtained from 

𝐽𝑘 ≡
𝜕F[𝑚]

𝜕𝑚
, 

𝐽𝑘 =

[
 
 
 
 
𝐹[𝑚 + 𝜌1]1 − 𝐹[𝑚]1

𝜌1
⋯

𝐹[𝑚 + 𝜌𝑙]1 − 𝐹[𝑚]1
𝜌𝑙

⋮ ⋱ ⋮
𝐹[𝑚 + 𝜌1]𝑁 − 𝐹[𝑚]𝑁

𝜌1
⋯

𝐹[𝑚 + 𝜌𝑙]𝑁 − 𝐹[𝑚]𝑁
𝜌𝑙 ]

 
 
 
 

𝑁×𝑙

 

For co-calculation of many stations, the Jacobian matrix use the same form 

in each station but modify the cooperation Jacobian matrix as  
 

𝐽𝑘 =

[
 
 
 
 𝐽𝑘1

𝐽𝑘2

⋱
𝐽𝑘𝑛]

 
 
 
 

𝑛𝑁×𝑛𝑙

 

when 𝑛 is the number of stations, 𝑁 is the number of data and 𝑙 is number of 

model’s layer. 

 

 

3.4 Chapter Summary 

This chapter started with the overall process of the idea, then the detail of 

each process was discussed. The details cover modifying the Lateral constraint 

and other parameters and operators which have been modified. The 

methodology, idea, and assumption are all explained, the next chapter is about 

validation to check the reliability of this project result. 
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Chapter 4 

Results and Discussion  

In this chapter, we apply the developed inversion with the lateral constraint 

to synthetic and real data. The results from the development of 1D VES 

inversion with lateral constraint will be shown in the first part. Then, the results 

of applying the real data from geophysics exploration at Sai Yok, 

Kanchanaburi, Thailand will be shown in the second part. 

 

 

4.1 Synthetic Experiments 

This research aims to develop a 1D VES inversion code by adding the 

lateral constraint. The results of the developed program in some synthetic data 

cases will show in this part. 

Sets of the synthetic data are generated from synthetic models using 1D 

VES forward modeling techniques. The calculated data are then treated as the 

observed data.  
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4.1.1 Synthetic case I : 2 layers 

4.1.1.1 Joint 2 stations 

4.1.1.1.1 Synthetic data and model 

The synthetic models are [100 10,000] and [300 15,000], both stations have 

the same thickness as 50 meters and the same electrode spacing which is shown 

in Figure 4.1. 

 

a 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 : Synthetic model of 2 layers case of station 1 (left) and 2 (right) 
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4.1.1.1.2 Inversion result 

Figure 4.2 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.1.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 : Resistivity transform of synthetic 2 layers case joint with station 

1 (left) and 2 (right) 
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Figure 4.3 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.1.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 : Resistivity model of synthetic 2 layers case joint with station 1 

(left) and 2 (right) 
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Figure 4.4 shows the calculated model which is the result from developed 

1D VES program of synthetic data in section 4.1.1.1.1. 

 

a 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 : Calculated model of 2 layers case of station 1 (left) and 2 (right) 
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4.1.1.2 Joint 6 stations 

4.1.1.2.1 Synthetic data and model 

The synthetic models are matrices [100 10,000], [300 15,000], [500 

13,000], [200 20,000], [150 10,000], and [450 14,000], all of the models' 

stations have the same thickness as 50 meters and the same electrode spacing 

which is shown in Figure 4.5. 

a 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 : Synthetic model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

(a) (b) (c) (d) (e) (f) 
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4.1.1.2.2 Inversion result 

Figure 4.6 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.1.2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 : Resistivity transform of synthetic 2 layers case joint with station 

1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)  

(a) (b) (c) 

(e) (f) (d) 
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Figure 4.7 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.1.2.1.  

a 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 : Resistivity model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.8 shows the calculated model which is the result from developed 

1D VES program of synthetic data in section 4.1.1.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 : Calculated model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

 

 

(a) (b) (c) (d) (e) (f) 
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4.1.1.3 Joint 9 stations 

4.1.1.3.1 Synthetic data and model 

The synthetic models are matrices [100 10,000], [300 15,000], [500 

13,000], [200 20,000], [150 10,000], [450 14,000], [700 16,000], [650 18,500], 

and [550 19,000], all of the models' stations have the same thickness as 50 

meters and the same electrode spacing which is shown in Figure 4.9. 

aas 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 : Synthetic model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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4.1.1.3.2 Inversion result 

Figure 4.10 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.1.3.1.  

Figure 4.11 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.1.3.1.  

Figure 4.12 shows the calculated model which is the result from 

developed 1D VES program of synthetic data in section 4.1.1.3.1. 
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Figure 4.10 : Resistivity transform of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 4.11 : Resistivity model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 4.12 : Calculated model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

 

 

 

 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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4.1.2 Synthetic case II : 6 layers 

4.1.2.1 Joint 2 stations 

4.1.2.1.1 Synthetic data and model 

The synthetic models are [100 100 1,000 1,000 10,000 10,000] and [500 

500 5,000 5,000 50,000 50,000], both stations have the same thickness 

matrices as [20 20 50 50 80] meters and the same electrode spacing which is 

shown in Figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 : Synthetic model of 6 layers case of station 1 (left) and 2 (right) 
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4.1.2.1.2 Inversion result 

Figure 4.14 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.2.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 : Resistivity transform of synthetic 6 layers case joint with 

station 1 (left) and 2 (right) 



43 
 

Figure 4.15 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.2.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 : Resistivity model of synthetic 6 layers case joint with station 1 

(left) and 2 (right) 
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Figure 4.16 shows the calculated model which is the result from 

developed 1D VES program of synthetic data in section 4.1.2.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 : Calculated model of 6 layers case of station 1 (left) and 2 (right) 
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4.1.2.2 Joint 6 stations 

4.1.2.2.1 Synthetic data and model 

The synthetic models are matrices [100 100 1,000 1,000 10,000 10,000], 

[500 500 5,000 5,000 50,000 50,000], [300 300 3,000 3,000 30,000 30,000], 

[400 400 4,000 4,000 40,000 40,000], [150 150 3,250 3,250 25,000 25,000], 

and [900 900 8,000 8,000 35,000 35,000], all of the models' stations have the 

same thickness matrices as [20 20 50 50 80] meters and the same electrode 

spacing which is shown in Figure 4.17. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 : Synthetic model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

(a) (b) (c) (d) (e) (f) 
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4.1.2.2.2 Inversion result 

Figure 4.18 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.2.2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 : Resistivity transform of synthetic 6 layers case joint with 

station 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)  

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.19 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.2.2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 : Resistivity model of synthetic 6 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)  

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.20 shows the calculated model which is the result from 

developed 1D VES program of synthetic data in section 4.1.2.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 : Calculated model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

 

 

(a) (b) (c) (d) (e) (f) 
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4.1.2.3 Joint 9 stations 

4.1.2.3.1 Synthetic data and model 

The synthetic models are matrices [100 100 1,000 1,000 10,000 10,000], 

[500 500 5,000 5,000 50,000 50,000], [300 300 3,000 3,000 30,000 30,000], 

[400 400 4,000 4,000 40,000 40,000], [150 150 3,250 3,250 25,000 25,000], 

[900 900 8,000 8,000 35,000 35,000], [750 750 6,000 6,000 40,000 40,000], 

[520 520 6,500 6,500 30,000 30,000], and [210 210 4,300 4,300 26,000 

26,000],  all of the models' stations have the same thickness matrices as [20 20 

50 50 80] meters and the same electrode spacing which is shown in Figure 

4.21. 
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Figure 4.21 : Synthetic model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

 

 

 

 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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4.1.2.3.2 Inversion result 

Figure 4.22 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.2.3.1.  

Figure 4.23 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.2.3.1.  

Figure 4.24 shows the calculated model which is the result from 

developed 1D VES program of synthetic data in section 4.1.2.3.1. 
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Figure 4.22 : Resistivity transform of synthetic 6 layers case joint with 

station 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 4.23 : Resistivity model of synthetic 6 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 4.24 : Calculated model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

 

 

 

 

 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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4.1.3 Synthetic case III : 10 layers 

4.1.3.1 Joint 2 stations 

4.1.3.1.1 Synthetic data and model 

The synthetic models are [10,000 10,000 1,000 1,000 10,000 10,000 1,000 

1,000 1,000 1,000] and [15,000 15,000 1,100 1,100 13,000 13,000 1,500 1,500 

5,000 5,000], both stations have the same thickness matrices as [20 20 50 50 

70 70 90 90 100] meters and the same electrode spacing which is shown in 

Figure 4.25. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 : Synthetic model of 10 layers case of station 1 (left) and 2 (right) 
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4.1.3.1.2 Inversion result 

Figure 4.26 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.3.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 : Resistivity transform of synthetic 10 layers case joint with 

station 1 (left) and 2 (right) 
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Figure 4.27 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.3.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 : Resistivity model of synthetic 10 layers case joint with station 1 

(left) and 2 (right) 
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Figure 4.28 shows the calculated model which is the result from 

developed 1D VES program of synthetic data in section 4.1.3.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 : Calculated model of 10 layers case of station 1 (left) and 2 (right) 
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4.1.3.2 Joint 6 stations 

4.1.3.2.1 Synthetic data and model 

The synthetic models are [10,000 10,000 1,000 1,000 10,000 10,000 1,000 

1,000 1,000 1,000], [15,000 15,000 1,100 1,100 13,000 13,000 1,500 1,500 

5,000 5,000], [13,000 13,000 1,800 1,800 20,000 20,000 1,800 1,800 2,000 

2,000], [20,000 20,000 2,000 2,000 16,000 16,000 1,700 1,700 2,000 2,000], 

[16,500 16,500 1,550 1,550 13,700 13,700 1,700 1,700 4,500 4,500], and 

[12,000 12,000 1,300 1,300 14,000 14,000 1,900 1,900 3,000 3,000], all of the 

models' stations have the same thickness matrices as [20 20 50 50 70 70 90 90 

100] meters and the same electrode spacing which is shown in Figure 4.29. 
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Figure 4.29 : Synthetic model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

 

 

 

 

(a) (b) (c) (d) (e) (f) 
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4.1.3.2.2 Inversion result 

Figure 4.30 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.3.2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30 : Resistivity transform of synthetic 10 layers case joint with 

station 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)  

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.31 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.3.2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 : Resistivity model of synthetic 10 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)  

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.32 shows the calculated model which is the result from 

developed 1D VES program of synthetic data in section 4.1.3.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32 : Calculated model of synthetic 2 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

 

 

(a) (b) (c) (d) (e) (f) 
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4.1.3.3 Joint 9 stations 

4.1.3.3.1 Synthetic data and model 

The synthetic models are [10,000 10,000 1,000 1,000 10,000 10,000 1,000 

1,000 1,000 1,000], [15,000 15,000 1,100 1,100 13,000 13,000 1,500 1,500 

5,000 5,000], [13,000 13,000 1,800 1,800 20,000 20,000 1,800 1,800 2,000 

2,000], [20,000 20,000 2,000 2,000 16,000 16,000 1,700 1,700 2,000 2,000], 

[16,500 16,500 1,550 1,550 13,700 13,700 1,700 1,700 4,500 4,500], [12,000 

12,000 1,300 1,300 14,000 14,000 1,900 1,900 3,000 3,000], [25,000 25,000 

3,100 3,100 23,000 23,000 2,500 2,500 3,000 3,000], [19,500 19,500 1,150 

1,150 11,500 11,500 1,900 1,900 2,550 2,550], and [21,000 21,000 2,100 2,100 

23,000 23,000 1,800 1,800 4,500 4,500], all of the models' stations have the 

same thickness matrices as [20 20 50 50 70 70 90 90 100] meters and the same 

electrode spacing which is shown in Figure 4.33. 
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Figure 4.33 : Synthetic model of synthetic 2 layers casejoint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

 

 

 

 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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4.1.3.3.2 Inversion result 

Figure 4.34 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from synthetic data and calculated data which 

update from the initial response of synthetic data in section 4.1.3.3.1.  

Figure 4.35 shows the resistivity model with the pseudo depth of synthetic 

model and calculated model which update from the initial model and the 

number of iterations calculation of synthetic data in section 4.1.3.3.1.  

Figure 4.36 shows the calculated model which is the result from 

developed 1D VES program of synthetic data in section 4.1.3.3.1. 
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Figure 4.34 : Resistivity transform of synthetic 6 layers case joint with 

station 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 4.35 : Resistivity model of synthetic 6 layers case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i)  

(d) (e) (f) 

(a) (b) (c) 

(g) (h) (i) 
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Figure 4.36 : Calculated model of synthetic 2 layers casejoint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), 8 (h) and 9 (i) 

 

 

 

 

 

 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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4.2 Real Experiment 

In this section will show the applicability of code by applying the code to 

the real observed data from Dr. Puwis Amatyakul. The study area is located in 

Sai Yok, Kanchanaburi, Thailand. The goal of the surveys is to map the 

resistivity structure to study the fault zone. 

 

Figure 4.37 : The study area at Sai Yok, Kanchanaburi, Thailand. The 

established survey is used Schlumberger VES surveys. (cite : Dr.Puwis 

Amatyakul, 2010) 

 

Figure 4.38 : The geological map from the study area. Mz is sandstone type 

I, Pt is sandstone type II, Ps is limestone, Qt is sedimentary rock (cite : 

Dr.Puwis Amatyakul, 2010) 

Mz Ps 
Ps 

Pt 

Pt 

Qt 
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4.2.1 Inversion result 

Figure 4.39 shows the apparent resistivity transform VS electrode spacing 

(AB/2) and mean relative error from real data and calculated data which update 

from the initial response of observed data (cite : Dr.Puwis Amatyakul, 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39 : Resistivity transform of observed data case joint with station 1 

(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

(a) (b) (c) 

(d) (e) (f) 



72 
 

Figure 4.40 shows the resistivity model with the pseudo depth of calculated 

model which update from the initial model and the number of iterations 

calculation of observed data (cite : Dr.Puwis Amatyakul, 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40 : Resistivity model of observed data case joint with station 1 (a), 

2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.41 shows the calculated model which is the result from developed 

1D VES program of observed data (cite : Dr.Puwis Amatyakul, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41 : Calculated model of observed data case joint with station 1 (a), 

2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) 

 

 

 

(a) (b) (c) (d) (e) (f) 
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4.3 Discussion and Conclusion 

From the result, the developed 1D VES inversion code with a lateral 

constraint can apply the real data from vertical electrical sounding exploration 

from the study area at Sai Yok, Kanchanaburi, Thailand and obtain the 

subsurface resistivity model beneath many station sites.  

The resolution and the reliability of the model obtained from the developed 

1D VES inversion code are approximate to those from the individual inversion, 

in addition, the results of developed 1D VES inversion code were weighted by 

the acquired data from the nearby stations which affect to the continuity 

between nearby stations. 

Therefore, we have verified that the developed 1D VES inversion with 

lateral constraint works for both synthetic tests and for the real experiment. The 

obtained model from the joint inversion is accurate and reliable resembles the 

single inversions. 
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Chapter 5 

Summary  

This research aims to create the 1D Vertical Electrical Sounding (VES) 

inversion with a Lateral constraint program.  

In order to develop the efficient 1D VES inversion with a lateral constraint, 

this research follow the Occam’s inversion proposed by Amatyakul (2010). 

Occam’s inversion has the roughness operator in the inversion system that 

affects the continuity of the model layer both vertical and horizontal. 

The developed 1D VES inversion codes are written about 300 lines of 

MATLAB program. All the codes can run and test with both synthetic and real 

experiments case. The results show that the developed 1D VES inversion code 

works with both synthetic and real data by can join the nearby station many 

stations into the calculation for helping to generate the models which have the 

continuity between layer and stations. 

The research validates the developed code with the synthetic experiment. 

The synthetic case shows that the developed code is working for joint the 

nearby station many stations in co-calculation.  

The results from both synthetic and real experiments demonstrate that the 

obtained models from developed 1D VES inversion code approximate to those 

from the individual inversion. In addition, the results have the continuity that 

supports and reduce the time for comparing and selecting the inversion’s 

results from many stations. 

Although the resolution and reliability of the results obtained from the 

developed 1D VES inversion code of this research are inferior to another 

inversion program which was used and calculated in industrial and real 

geophysics exploration, the developed 1D VES inversion code of this research 

can improve and develop more. 
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