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Abstract

KELT-9b is an ultra-hot Jupiter discovered by Gaudi et al. (2017)

orbiting around a rapid-rotator oblate KELT-9 star. In this research,

we aim to fit gravity-darkened transit, phase curve variation, and

global parameters of the KELT-9 system using TESS photometric

data, TRES spectroscopic data and avialable apparent magnitudes in

many filters. Our fitting model takes into account asymmetric transit

(simutrans, Herman et al. (2018)), spectroscopic Doppler tomography,

and isochrone fitting. After running MCMC (emcee, Foreman-Mackey

et al. (2013)) through the model, we got stellar inclination Irot = 58.67

+0.88
−0.34 degree and sky-projected spin-orbit misalignment angle (λ) =

274.78 ± 0.25 degree which imply a nearly polar orbit. Moreover, we

finally got Rp/R∗ = 0.079772 +0.000059
−0.000061 which is significantly lower than

from Gaudi et al. (2017) as we expected, due to the gravity darken-

ing effect on polar orbit transit. In term of phase curve variation,

we adopt the model from Esteves et al. (2013) and got the amplitude

of each term as follow, the amplitude of phase function term (Ap) =

498.7 +7.3
−8.0 ppm, the amplitude of doppler boosting term (Ad) = 44.9

+2.9
−2.8 ppm, the amplitude of ellipsoidal variation term (Ae) = 23.8 +4.0

−3.9

ppm, and secondary eclipse depth (fp) = 637.2 +9.0
−8.9. These results are

all self-consistent and fit together reasonably well. Finally, we need to

emphasize the potential and importance of The Transiting Exoplanet

Survey Satellite (TESS) to study gravity-darkened transit and phase

curve variation to understand the physics behind these effects better.
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Chapter 1

Introduction

In today’s world, extra-solar planet or exoplanet is one of the most active

research fields in astronomy and astrophysics. It mainly studies about forma-

tion, evolution, and atmosphere of planets outside our solar system to understand

the nature of planets at least in our solar neighbourhood. Since the discovery

of the first exoplanet orbiting around a main-sequence star, 51 Pegasi b (Mayor

and Queloz, 1995), over 4000 exoplanets have been discovered in 25 years (NASA

exoplanet archive, Retrieved April, 30, 2020). There are many methods of de-

tecting and studying exoplanet such as radial velocity method, transit method,

direct imaging method, microlensing method, etc. However, nearly 95% of them

are discovered from the two most common techniques, which are radial velocity

and transit method.

1.1 Rationale and Signification

Gravity darkening and phase curve variation effects affect the total brightness

of the system at a part-per-thousand level, which cannot be observed in the past

ground-based surveys. However, since we can observe from space, we are able to

study these small scale effects accurately and should include them in the model.

Transiting Exoplanet Survey Satellite (TESS) is the latest NASA’s all-sky survey

space telescope mainly looking for transiting exoplanets. Shporer et al. (2019)

and Zhou et al. (2019) showed the potential of using TESS photometric data

to study either phase curve variation and gravity darkening effect, respectively.
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1.2 Objectives

So, we expected to include these effects to the transit model and improve transit

parameters of exoplanet system.

1.2 Objectives

This research will focus on building a transit model of phase curve variation,

gravity darkening effect, isochrone fitting and global transit parameters and sub-

sequently using Transiting Exoplanet Survey Satellite (TESS) photometric data,

Tillinghast Reflector Echelle Spectrograph (TRES) spectroscopic data, and mag-

nitudes in various filters on KELT-9 to constrain a set of model parameters.

1.3 Overview of the Report

This research report includes five chapters. The introduction, rationale and

signification, and objective of this research are in chapter 1. Chapter 2 is about

background knowledge and previous related work. Then, all methodology and the

overall process will be presented in the chapter 3. The result and discussion are

in chapter 4. Finally, chapter 5 is about the conclusion of this research.
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Chapter 2

Background and Related Works

This research includes either photometric analysis that used photometric data

from TESS and spectroscopic analysis that used spectroscopic data from TRES

(Gaudi et al., 2017). The several advanced astronomic effects and analysis method

related to this works will be provided in this chapter including observations and

target [See 2.1], photometric analysis [See 2.2], and spectroscopic analysis [See 2.3]

of exoplanet. We also include isochrone fitting analysis [See 2.4] for the star in

this chapter.

2.1 Observations and Target

In this section, information about observation and target, which is used in

this research is provided. The two observations used in this research are Transiting

Exoplanet Survey Satellite (TESS), NASA’s space telescope looking for transiting

exoplanet, and Tillinghast Reflector Echelle Spectrograph (TRES), Smithsonian

Astrophysical Observatory’s Echelle spectrograph located at Mt. Hopkins in Ari-

zona, USA. The target star of this research is KELT-9 star which has one confirmed

ultra-hot Jupiter orbit around.

3



2.1 Observations and Target

Figure 2.1 The illustration of TESS sky coverage map.

2.1.1 Observations

2.1.1.1 Transiting Exoplanet Survey Satellite (TESS)

The Transiting Exoplanet Survey Satellite (TESS) is NASA’s space-based

telescope launched on 18 April 2018, to replace the old Kepler space telescope.

Unlike Kepler that was designed to look at the same direction for earth-size plan-

ets, TESS was designed to be an all-sky survey monitoring brightness of nearby

stars with apparent magnitudes brighter than 12. In TESS two-years mission, the

sky is divided into 26 observation sector.The sky coverage map is shown in Figure

2.1.

Each sector is observed by four cameras with Field of View (FoV) 24◦ × 24◦

each, for 27 days. After 27 days of observing, the data will be downlinked and

calibrated by the Science Processing and Operations Center (SPOC) team. Then,

the data will be released at the Mikulski Archive for Space Telescopes (MAST)

for the public.

In addition, TESS has two types of images: the 2-minutes cadence images and

Full-Frame Images (FFIs). First, 2-minutes cadence images are the stack of 2-

second data from cameras together to get better resolution. Targets of 2-minutes

cadence images are pre-selected from the good planet candidates as Target of

Interest (TOI). Second, Full-Frame Images (FFIs) are 30-minutes cadence image

with bigger FoV than 2-minutes cadence and have less sensitivity.
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2.1 Observations and Target

Figure 2.2 A view of the TRES head from the NE in the chamber (April 2014).

2.1.1.2 Tillinghast Reflector Echelle Spectrograph (TRES)

Tillinghast Reflector Echelle Spectrograph (TRES) is a fiber-fed cross-dispersed

echelle spectrograph mounted in 1.5-m Tillinghast optical spectroscopic telescope,

Fred Lawrence Whipple Observatory, Mt. Hopkins, Arizona, US. TRES has a

wavelength range from 390 nm to 910 nm and offers three resolution at 60K, 48K,

and 30K. The setup of TRES is shown in Figure 2.2.

2.1.2 Target (KELT-9)

KELT-9 or HD 195689 is an A0 type star with apparent magnitude 7.56 in

V-band located around 615 light-years from solar systems in the constellation of

Cygnus. KELT-9 has one known exoplanet orbit around. KELT-9b is an ultra-

hot Jupiter with an orbital period of around 1.48 days. KELT-9b was discovered

by Gaudi et al. (2017) during the Kilodegree Extremely Little Telescope (KELT)

survey. Physical parameters of the star and planet from Gaudi et al. (2017) are

shown in table 2.1.
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2.2 Photometric Analysis

Parameters Value Error

Orbital and transit parameters
T0 (BJD - 2457000) 95.68572 ± 0.00014
P (d) ..................... 1.4811235 ±0.0000011
Rp/R∗ .................... 0.08228 ±0.00043
a/R∗ ...................... 3.153 ±0.0011
iorbit (degree) ........ 86.79 ±0.25
fp (ppm) ................ 1006 ±97
e ........................... 0.0 (fixed) -
ω∗.......................... 90 (fixed) -
Stellar parameters
Irot (degree) ........... - -
λ (degree) ............... 275.2 ± 1.4
M∗ (M�) ................. 2.52 +0.25

−0.20

R∗ (R�) .................. 2.362 +0.075
−0.063

vsini (km/s) ............ 111.4 (fixed) -

Table 2.1: Gaudi et al. (2017) transit and stellar parameters.

2.2 Photometric Analysis

One of the most common exoplanet detection methods which discovered al-

most 77% of confirmed exoplanets these days is the transit method. The tran-

sit method uses only our capability of monitoring the brightness of the system.

Because we can not resolve light from planets and stars separately, so we only

measure the total flux of the system that includes various astronomical effects in

consideration. Unfortunately, we can not include either phase curve variation [See

2.2.1] and gravity darkening [See 2.2.2] in our model in the past because of our

big error. Now, when we can reduce the limit of the detection method to around

60 ppm, we can include the model of different astronomical effects that affect the

total brightness of the system.

2.2.1 Phase curve variations

In this topic, we will consider the time-series of the brightness of the system

called light curve. In the phase-folded light curve, we may notice wobble due to

interactions between planets and stars call “phase curve variation”. Esteves et al.

(2013) has shown four physical components of phase curve variation: i) Fp, the

planet phase function; ii) Fe, the ellipsoidal variations; iii) Fd, the doppler boosting

6



2.2 Photometric Analysis

Figure 2.3 The illustrator of transit, secondary eclipse and phase function.

term; iv) Fecl, secondary eclipse term which all of these terms are functions of phase

of the planet (φ).

• Planet phase function term (Fp). This term is the planet’s reflected

light as a Lambert sphere (Russell, 1916). When the planet orbits around

the star, we can observe the different amount of total light due to the planet’s

scatter light which varies as a function of orbital phase. This effect is the

same effect as the moon’s phase as in Figure 2.3.

We can describe this term in equation 2.1.

Fp = Ap
sin(z) + (π − z) cos(z)

π
(2.1)

where Ap is the amplitude of the planet phase curve term, z is related to

phase of planet (φ) and orbital inclination (i) as in equation 2.2.

cos(z) = − sin(i) cos(2πφ) (2.2)

• Doppler boosting term (Fd).This term is the relativistic term due to light

source moving toward or away from the observer. When the star is moving

toward the observer, the observers can detect brighter intensity than when

the star is moving away. For the obvious example, if we observe the AGN jets

of the galaxies M87, we can only see the single jet as in Figure 2.4 because

7



2.2 Photometric Analysis

Figure 2.4 Only a single jet is visible in M87 from NASA and The Hubble
Heritage Team (STScI/AURA).

of the Doppler boosting effect. For exoplanet light curve, this variation can

be described in term of orbital phase (φ) as in equation 2.3.

Fd = Ad sin(2πφ) (2.3)

where Ad is the amplitude of the doppler boosting term.

• Ellipsoidal variations term (Fe) is driven by tidal reaction between the

planet and its host star. This reaction affects the host star shape from

spherical to ellipsoidal that changes the total flux from the star along the

planet’s phase. This term can be written as a linear combination of the first

three cosine harmonics of the planet’s period (Morris, 1985) which can be
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2.2 Photometric Analysis

described as in equation 2.4.

Fe = −Ae[cos(2π · 2φ) + f1 cos(2πφ) + f2 cos(2π · 3φ)] (2.4)

where Ae is the amplitude of the ellipsoidal variations term, f1, f2 are con-

stant of the systems related to a/R∗ and orbital inclination (i) as in equation

2.5.

f1 = 3α1

(
a

R∗

)−1
5 sin2(i)− 4

sin(i)
(2.5)

f2 = 5α1

(
a

R∗

)−1

sin(i)

where α1 can be described as equation 2.6.

α1 =
25u

24(15 + u)

(
y + 2

y + 1

)
(2.6)

where u and y are linear and quadratic term of quadratic limb-darkening

coefficient respectively.

• Secondary Eclipse term (Fecl). This term occurs when the planet is

behind the star in the line of sight. The total brightness of the system

decrease as in equation 2.7 (Kreidberg, 2015)

Fecl = 1 + fp(1− α) (2.7)

where fp is the planet-to-star flux ratio. α is the fraction of the planet disk

that is occulted by the star.

2.2.2 Gravity darkening

Albrecht et al. (2012) show that many hot-Jupiters, gas giant planets orbit in

a close-in orbit, have a misalignment between planet orbital axis and star rotation

axis. So, the study of spin-orbit misalignment of exoplanet and its host star can

help our understanding of planet formation, migration, and evolution. The typical

approach to study spin-orbit misalignment has been done through the Rossiter-

9



2.2 Photometric Analysis

Figure 2.5 The illustrator of 3-D structure of planetary system from Herman
et al. (2018).

McLaughlin (RM) effect [See 2.3.1], which using spectroscopic data of the system.

However, using the RM effect is limited in two ways. First, The RM effect only

provides the information on the sky-projected spin-orbit misalignment angle (λ)

but not stellar rotation inclination (I∗) or orbital inclination (iorb), so we can not

construct the true-3D spin-orbit misalignment angle (ψ). Second, rapid-rotating

star has a lack of many spectral lines that make using RM effect difficult.

Main-sequence stars early than spectral type ∼F6 are expected to have high

rotational velocity because of the radiative structure. These rapid-rotators are

normally in oblate shape due to their high centrifugal force from rotational velocity

and have high surface gravity (g) as described in Barnes (2009). von Zeipel (1924)

also derived a relationship between surface gravity (g) and effective temperature

(also related to stellar brightness) as in equation 2.8.

T

Tpole
=

(
g

gpole

)β

(2.8)

where β is gravity darkening exponent (Espinosa Lara and Rieutord, 2011).

So, if the planets misaligned from the star’s rotation axis and we are in the

10



2.3 Spectroscopic Analysis

Figure 2.6 An example of asymmetric transit with different impact factor (b)
from Barnes (2009).

line of sight to see the transit, we should be able to see an asymmetric transit

because the planet’s shadow conceals different amount of light through the path

as in Figure 2.6. From this technique, we are able to constrain either λ and I∗.

However, the only two planets confirmed with this asymmetric gravity dark-

ened transits are Kepler-13 (Szabó et al. (2011), Barnes et al. (2011), and Herman

et al. (2018)) and HAT -P -70 (Zhou et al., 2019) because this effect will only affect

in part-per-thousand scale.

2.3 Spectroscopic Analysis

Spectroscopy always is the best way to extract information for astrophysics

since they contain information about the dynamic, composition, and interaction

of celestial objects. However, we can use spectroscopy to implement a different

technique to extract different information. The most common and important

technique for exoplanet detection is doppler spectroscopy. Doppler spectroscopy

or radial-velocity method observes the doppler shift of the stellar spectrum. On

the other hand, if we are observing an in-transit situation, we can cobtain more

information on planet’s atmospheric composition and also sky-projected spin-orbit

misalignment angle (λ) via the Rossiter–McLaughlin effect [See 2.3.1].

11



2.4 Isochrone analysis

Figure 2.7 Schematic Diagram of the Rossiter-McLaughlin (RM) Effect.

2.3.1 Rossiter–McLaughlin effect

The Rossiter–McLaughlin effect (Rossiter (1924) and McLaughlin (1924)) is

a spectroscopic phenomenon that occurs when an object transit across a rotating

star. From the spectrum of the star, we expect a certain rotational velocity (vrot)

from the doppler effect over time. Nevertheless, when there is an object move

across different parts of the star with different λ, it will create a different pattern

of vrot distortion, as shown in Figure 2.7.

2.4 Isochrone analysis

Isochrone fitting is the technique that is used to infer the physical parameters

of stars. An isochrone is a same-age line in the Hertzsprung-Russell (HR) diagram,

calculated from the stellar evolution model at different initial mass, metallicity,

and some other physical parameters. With the isochrone grid, which is a set

of stellar evolution track, we can interpolate our isochrone grid to fit for stellar

parameters based on observational data.

12



2.4 Isochrone analysis

Figure 2.8 HR diagram of Evolutionary tracks for stars with masses from 1 to
10 M�(Grey) and interpolated tracks at fixed ages (Black).
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Chapter 3

Methodology

This chapter describes the process of this research, starting from data prepara-

tion [See 3.1], model creation [See 3.2], and analysis calculation [See 3.3]. Diagram

showing overall process is showed in Figure 3.1.

Figure 3.1 Diagram of overall process.
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3.1 Data Preparation

3.1 Data Preparation

3.1.1 Photometric data

In this research, we used TESS photometric data of KELT-9 (TIC 16740101)

downloaded from the Mikulski Archive for Space Telescopes (MAST) portal, as

shown in Figure 3.2.

Figure 3.2 MAST portal for TESS KELT-9 data.

In the FITS file we downloaded, we used the Presearch Data Conditioning

Simple Aperture Photometry (PDCSAP) light curve, which removed the system-

atic error (Smith et al., 2012; Stumpe, Smith, Van Cleve, et al., 2012; Stumpe,

Smith, Catanzarite, et al., 2014) in our photometric analysis. We provided SAP

and PDCSAP light curve in Figure 3.3.

Then, we masked out points that are NaN and bad quality points according to

the quality flag that was provided by SPOC (Jenkins et al., 2016). We also masked

out the outlying data points that may occur due to flare or systematic error from

the starting of orbit 38 (BJD 2458724.93585) to BJD 2458725.94321225. After

that, the PDCSAP flux and PDCSAP flux error were divided by median flux in

order to normalized flux to unity. We show the prepared light curve in Figure 3.4.

15



3.1 Data Preparation

Figure 3.3 Comparison between PDCSAP (top) and SAP (bottom) light curve.

3.1.2 Spectroscopic data

Gaudi et al. (2017) used RV data from TRES with spectral resolution R =

44000. They used 104 of all 115 spectroscopic observations for either Doppler

Tomography (DT) analysis and planetary orbit and mass. The data consist of 40

out-of-transit observations and 64 in-transit observations, used for different pur-

poses. The 40 out-of-transit plus 3 selected in-transit observations are used to

16



3.1 Data Preparation

Figure 3.4 Prepared PDCSAP light curve of KELT-9.

construct planetary orbit and planet’s mass, while the 64 in-transit observations,

collected on 2014-11-15, 2015-11-06, and 2016-06-01 are used for doppler tomog-

raphy analysis. In the spectroscopic part of this research, we obtained the 64

in-transit spectroscopic data from Gaudi et al. (2017) for our doppler tomography

analysis. The spectroscopic data from 2014-11-15 are showed in Figure 3.5.

Figure 3.5 Plot of cross correlation function of radial velocity (km/s) and orbital
phase from 2014-11-15.
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3.2 Model Creations

3.1.3 Isochrone fitting data

Our isochrone fitting analysis fits the model’s B, V, J, H, K, G, BP, RP band

magnitude with the observed magnitude in order to constrain stellar parameters

M∗, R∗, and Irot which is the inclination angle of rotational axis. So, we adopt eight

bands magnitude and other stellar parameters as in Table 3.1 for the analysis.

Parameters Value Source

Observed magnitude
Johnson B (mag) 7.587 ± 0.130767 Mermillod
Johnson V (mag) 7.55 ± 0.01 Mermillod
J (mag) 7.458 ± 0.018 2MASS
H (mag) 7.492 ± 0.021 2MASS
K (mag) 7.482 ± 0.02 2MASS
G (mag) 7.57675 ± 0.000333 Gaia
BP (mag) 7.61109 ± 0.001626 Gaia
RP (mag) 7.56254 ± 0.002866 Gaia
Other stellar parameters
Parallax 4.86254 ± 0.0372738 Gaia
Stellar Rotational Velocity (km· s−1) 111.40 ± 1.27 Gaudi et al. (2017)

Table 3.1: Stellar properties of KELT-9.

3.2 Model Creations

3.2.1 Photometric part

The phase curve variation model, including Phase function, Doppler boosting,

and Ellipsoidal variation, was directly created as described in 2.2.1 (equation 2.1,

2.3, 2.4) [Also see Python code in 6]. For the secondary eclipse, we used batman

package (Kreidberg, 2015) as our model [See equation 2.7]. Free parameters in our

phase curve variation model are phase function amplitude (Ap), doppler boosting

amplitude (Ad), ellipsoidal variation amplitude (Ae), and planet-to-star flux ratio

(fp). An example of our phase curve variation is shown in Figure 3.6.

Apart from phase curve variation, we include the gravity-darkening effect as

described in 2.2.2 to our model. We used simutrans (Herman et al., 2018), which

is an integrated-numerical package for gravity darkened star as our transit model.

Free parameters and Python code are shown in Table 4.1 and 6 respectively. An
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3.2 Model Creations

Figure 3.6 An example plot showing various components of phase curve variation
model.

example of a transit light curve from simutrans package is shown in Figure 3.7.

Figure 3.7 An example plot showing a gravity-darkened light curve of simutrans
model.

In order to reduce the systematic variation, we fit for natural cubic spline

separately between the sector 14 (6 knots) and 15 (8 knots) data. We assure that
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3.2 Model Creations

this spline fitting does not affect either phase curve variation fitting and transit

fitting by visualization, as showed in Figure 3.8. From the figure, we have seen

that variation of the spline is much smaller than variations due to phase curve or

transit.

Figure 3.8 A plot of spline model over the data.

3.2.2 Spectroscopic part

For the spectroscopic part, we model our data by the novel doppler tomogra-

phy technique.

Doppler tomography technique, which was used in Zhou et al. (2019), Collier

Cameron et al. (2010) etc., is a spectroscopic technique using the Rossiter–McLaughlin

(RM) effect [See 2.3.1] to determine the sky-projected spin-orbit misalignment an-

gle (λ). This technique also needs a transit model to construct a shadow of the

planet. After modeling the transit, we then perform calculation of the stellar rota-

tional velocity part by cross-correlating the target star spectrum with a standard

star spectrum. The width of the cross-correlation function (also refer to the width

of the matching spectral line) is interpreted as stellar rotational velocity.

Using the rotational velocity of vrot = 111.4 km/s from Gaudi et al. (2017),

we can create the model of cross-correlation function. Then, we combine transit
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3.2 Model Creations

model and cross-correlation function together to construct the doppler tomography

model as in Figure 3.9.

Figure 3.9 An example of spectroscopic data (top) and Doppler Tomography
model (bottom).

3.2.3 Isochrone fitting part

For isochrone fitting, we used the mass (mstar) and radius (rstar) (both are free

parameter), rotational angle (Irot) (free parameter), rotational velocity (vrot) (fixed

at 111.4 km/s), and parallax angle (fixed at 4.8625’) of host star as parameters.

We used those parameters to determine the expected band magnitude. Then, we

use the observed band magnitudes data in 3.1 to fit and give the log-likelihood

function and stellar oblateness due to high rotational velocity for each model

(respected to set of inserted parameters).
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3.3 Analysis Calculation

3.3 Analysis Calculation

A Markov chain Monte Carlo (MCMC) algorithm (Goodman and Weare,

2010) is a usual approach in astrophysics to determine the posterior distribution of

parameter space. The posterior distribution P (θ|D,M) can be simply represented

as in equation 3.1

P (θ|D,M) ∝ P (D|θ,M)P (θ|M), (3.1)

where

P (θ|D,M) is the posterior distribution of parameter θ after given Model (M) and

Data (D),

P (D|θ,M) is the likelihood function, and

P (θ|M) is the prior (An initial guess about the parameter).

After we let MCMC run, each walker will explore our parameter space and

finally walk to the maximum and create a posterior distribution.

In this research, we used the Python-based affine-invariant Markov Chain

Monte Carlo package, named emcee (Foreman-Mackey et al., 2013) to get the

posterior distribution. We found that our algorithm needs higher computational

resources than a single computer. So, we ran our code in the galaxy cluster,

which is a local cluster in astrophysics lab at the Department of Physics, Mahidol

University.
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Chapter 4

Results and Discussion

After running MCMC through gravity darkening included model, we got a

posterior distribution of each parameter shown in Figure 4.1. Figure 4.1 is pro-

duced by corner Python package (Foreman-Mackey, 2016). The histogram at the

top of each column is a posterior distribution of one specific parameter, while the

other plots in the column is the covariance between each pair of parameters. Most

parameters are distributed as gaussian except M∗, R∗, and Irot, which are param-

eters in the isochrone fitting part. The reason for that will be discussed in 4.3

Median values and 2σ errors of parameters from gravity-darkening included

model (simutrans package) are listed in Table 4.1 along with no-gravity darkening

included model (batman package) and Gaudi et al. (2017).

4.1 Photometric results

From the table, we pointed out the difference in Rp/R∗. The difference is

directly from the gravity darkening effect. In this case, the planet transit blocked

the brighter part of the star (pole). So, we shall get Rp/R∗ larger than it actu-

ally be, if gravity darkening effect is not taken into account. We indicated the

significant different (over 1σ) from 0.079772+0.000059
−0.000061 and 0.081094 +0.000077

−0.000079 from

models with and without gravity darkening effect. Moreover, as we mention in

2.2.2, we now can fit for stellar rotation angle Irot = 58.67 +0.88
−0.34 degree in order to

understand more about the stellar configuration.
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4.1 Photometric results

Figure 4.1 A corner plot of posterior distributions from MCMC.

A plot of models with and without gravity darkening effect is shown in

Figure 4.2. The model with gravity darkening shows a better fit, especially during

transit, as we expected.

Finally, we also compare our phase curve variation fitting model with Wong

et al. (2019) approach, which used an nth-order Fourier series at phase φ instead

of combining each physical effect like ours. We decided to illustrate the difference

between our phase curve model and Wong et al. (2019) model in Figure 4.3.

Instead of using all parameters calculated in Wong et al. (2019), we ran MCMC

through Wong et al. (2019)’s model to get a better fit in our configuration i.e., data

masking, spline fitting. The plots show a better fit in Wong et al. (2019)’s work

due to a more empirical model. However, our phase curve model followed Esteves
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4.1 Photometric results

Parameters
Model with

G-Dark
Model without

G-Dark
Gaudi et al. (2017)

Transit parameters
T0 (days - 2457000) 95.6830 +0.0013

−0.0011 95.6751 +0.0033
−0.0034 95.68572 ± 0.00014

Period (days) 1.48112156 +0.00000098
−0.00000114 1.4811286 +0.0000031

−0.0000030 1.4811235 ± 0.0000011
Rp/R∗ 0.079772 +0.000059

−0.000061 0.081094 +0.000077
−0.000079 0.08228 ± 0.00043

a/R∗ 3.1430 +0.0031
−0.0032 3.100 ± 0.016 3.153 ± 0.011

iorb (deg) 86.678 +0.058
−0.056 84.41 +0.37

−0.34 86.79 ± 0.25
e 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
ω∗ 90.0 (fixed) 90.0 (fixed) 90.0 (fixed)
Phase curve parameters
Ap (ppm) 498.7 +7.3

−8.0 496.3 +7.6
−7.4 -

Ad (ppm) 44.9 +2.9
−2.8 49.9 ± 2.9 -

Ae (ppm) 23.8 +4.0
−3.9 24.4 ± 4.0 -

fp (ppm) 637.2 +9.0
−8.9 639.8 ± 8.9 -

Stellar parameters
Irot (deg) 58.67 +0.88

−0.34 - -
Mstar (M�) 2.52 +0.056

−0.020 - 2.52 +0.25
−0.20

Rstar (R�) 2.147 +0.016
−0.033 - 2.362 +0.075

−0.063

λ (deg) 274.78 ± 0.25 - 275.2 ± 1.4
vsini (km/s) 111.4 ± 1.3 (adopt) - 111.4± 1.3 (this work)

Table 4.1: Parameters’ median and 1σ error.

Figure 4.2 A plot of two models with and without gravity darkening effect.

et al. (2013) can be understood better in term of underlying physical effects.
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4.2 Spectroscopic results

Figure 4.3 A plot of two phase curve variation models, Esteves et al. (2013)’s
model, and Wong et al. (2019)’s model.

4.2 Spectroscopic results

As we mentioned in 3.2.2 that we included a spectroscopic part for constrain-

ing the sky-projected spin-orbit misalignment angle (λ) more precisely. The con-

tour plot of 3-days in-transit spectroscopic data, model, and residual are shown
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4.3 Isochrone results

in Figure 4.4 top, middle, and bottom panel respectively. We can see that our

best-fit parameters allow the model to fit the data correctly with no significant

structure in residual. It also helps in fitting λ = 274.78 ± 0.25 degree which we

can compare that we got the significantly lower error in λ.

4.3 Isochrone results

Isochrone fitting in our model aimed to fit for stellar parameters such as Mstar,

Rstar, Irot, etc. The process and data for isochrone fitting are described in 3.2.3.

The plot of the model’s and data’s apparent magnitudes is shown in Figure 4.5. As

in Figure 4.5, we cannot perfectly fit the data. The reason behind this is the same

reason that the posterior distribution of stellar parameters in 4.1 is not in perfect

gaussian. It directly comes from our model that we cannot properly interpolate the

isochrone since they are sparsely sampled. We deal with this problem by taking

the 68-percentile range of posterior distribution (especially in stellar parameters)

in our result.
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4.3 Isochrone results

F
ig

u
re

4
.4

A
co

n
to

u
r

p
lo

t
of

3-
d
ay

s
in

-t
ra

n
si

t
sp

ec
tr

os
co

p
ic

d
at

a
(T

op
),

m
o
d
el

(M
id

d
le

),
an

d
re

si
d
u
al

(B
ot

to
m

).

28



4.3 Isochrone results

Figure 4.5 A plot of apparent magnitude in different bandpass filters.
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Chapter 5

Conclusions

This research primarily aims to study phase curve variation and gravity-

darkened transit, which is a photometric effects. Parameter values calculated

from 68-percentile from the posterior distribution of Markov-Chain Monte-Carlo

(MCMC, emcee), as showed in Table 4.1, are all in reasonable agreements with

each other. We also include the Doppler tomography technique and isochrone

fitting to help constrain λ and stellar parameters, respectively. Finally, we need

to point out the importance and the potential of TESS to detect gravity-darkened

transit and also phase curve variation to understand the physics of exoplanet

systems better.
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Chapter 6

Appendix

1 #!/ usr/bin/env python2

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Jun 26 11:56:44 2019

5

6 @author: patcharapol

7 """

8

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import time ,os ,sys ,pickle

12 import get_natural_spline

13 from fitiso import isochrone_lnlike

14

15 sys.path.append ("simuTrans -noprecession ")

16 from transit import model as transitmodel

17 import DT_function

18 sys.path.append(’/work/patch/site -package -patch/lib/

↪→ python2 .7/site -packages ’)

19 import emcee

20 from emcee.utils import MPIPool

21 import batman

22

23

24

25 def model(theta ,data ,oblateness ,vsini ,beta ,return_spline=

↪→ False ,sep_model=False ,fratio_need=False ,plot=False):

26 t0,per ,a,b,c,rprs ,ars ,inc ,fp,irot ,m_star ,r_star ,lam =

↪→ theta

27 ## data ##

28 data_all = np.concatenate ((data[0],data [1]),axis =1)

29 x = data_all [0]

30 y = data_all [1]

31

32

33 ## Transit parameter ##

34 t0 = t0
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35 per = per

36 beta = beta

37 lam = lam

38 ecc = 0.

39 w = 90.0

40 u1 = 0.1588

41 u2 = 0.2544

42

43

44 ## Phase calculation ##

45 phase = (x-t0)/per

46 phase = phase -np.floor(phase)

47 phase[phase >0.8] = phase[phase >0.8] -1.0

48

49 ## Primary and secondary transit mask ##

50 mask_prim = ((phase >= -0.15) & (phase <=0.15))

51 phase_transit = phase[mask_prim]

52 mask_sec = ((phase >=0.3) & (phase <=0.7))

53 t = x[mask_sec]

54

55 i=(inc*np.pi)/180 #orbital inclination in radian

56 ### Phase curve variation ###

57 z = np.arccos(-np.sin(i)*np.cos(2*np.pi*phase))

58 F_p = a*((np.sin(z)+(np.pi -z)*np.cos(z))/np.pi) ##

↪→ Phase Function ##

59 F_d = b*np.sin(2*np.pi*phase)## Doppler Boosting ##

60 ### Ellipsoidal Variations ###

61 alpha1 = ((25*u1)/(24*(15+ u1)))*((u2+2)/(u2+1))

62 f1 = 3* alpha1 *(ars)**( -1) *((5*( np.sin(i))**2 - 4)/(np.

↪→ sin(i)))

63 f2 = 5* alpha1 *(ars)**( -1)*(np.sin(i))

64 F_e = -c*(np.cos(2*np.pi*2* phase)+f1*np.cos(2*np.pi*

↪→ phase)+f2*np.cos(2*np.pi*3* phase))

65

66 #### Transit model ####

67 irot=irot

68 ld1 = u1 ### limb darkening coeff 1 -- keep this fixed

69 ld2 = u2 ### limb darkening coeff 2 -- keep this fixed

70 fratio = oblateness ### Rpole/Requator for the star --

↪→ keep this fixed

71 beta = beta ### gravity darkening coefficient , keep

↪→ this fixed

72 lam = lam### projected obliquity , take this from

↪→ discovery paper as a prior

73 mstar = m_star ### stellar mass , fix this from

↪→ discovery paper

74 Req = r_star# ### stellar radius at equator , fix this

↪→ from discovery paper

75 vsini = vsini# ### vsini , fix this from discovery

↪→ paper

76 impact_b = ars*np.cos(i)
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77 transit_model_input = [1000 ,ld1 ,ld2 ,fratio ,irot ,0,beta

↪→ ,500, impact_b ,rprs ,ars ,lam ,0,mstar ,Req ,vsini/np.

↪→ sin(irot*np.pi /180.)]

78 lcmodel = (transitmodel(phase_transit ,

↪→ transit_model_input))

79 transit_model = np.ones(len(phase))

80 transit_model[mask_prim] = lcmodel

81 ### Plot fot transit ###

82 # plt.scatter(phase[mask_prim],y[mask_prim],s=4)

83 # plt.plot(phase_transit ,lcmodel ,’.r’)

84 # plt.show()

85

86

87 ##### Secondary eclipse model #######

88 params = batman.TransitParams ()

89 t0 = t0

90 period = per

91 params.per = period

92 params.fp = fp

93 params.limb_dark = "quadratic"

94 params.u = [u1 ,u2]

95 params.rp = rprs

96 params.a = ars

97 params.inc = inc

98 params.ecc = ecc#

99 params.w = w#

100 params.t_secondary = (t0 -( period /2.))

101

102 sec_model = np.ones(len(phase))

103 m = batman.TransitModel(params , t, transittype ="

↪→ secondary ")

104 seclipse_model = m.light_curve(params)-fp

105

106 sec_model[mask_sec] = seclipse_model

107

108 ##### Final model #####

109 model = (F_p+F_d+F_e+1)*transit_model*sec_model

110

111 ## Fit for spline ##

112 x14 = data [0][0]

113 x15 = data [1][0]

114

115 res = y-model

116 s14 = get_natural_spline.

↪→ get_natural_cubic_spline_model(x14 , res[x<=max(

↪→ x14)], minval=min(x14), maxval=max(x14), n_knots

↪→ =6)

117 s14 = s14.predict(x14)

118

119
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120 s15 = get_natural_spline.

↪→ get_natural_cubic_spline_model(x15 , res[x>max(x14

↪→ )], minval=min(x15), maxval=max(x15), n_knots =8)

121 s15 = s15.predict(x15)

122

123 s = np.concatenate ((s14 ,s15))

124

125 if plot:

126 plt.scatter(x,y)

127 plt.plot(x,model+s,’.r’)

128 plt.plot(x,s+1,’-b’)

129 plt.show()

130 # sys.exit()

131

132 model = model+s

133

134 if return_spline:

135 return model ,s

136 else:

137 if sep_model:

138 return F_p ,F_d ,F_e

139 else:

140 if fratio_need:

141 return model ,fratio

142 else: return model

143

144

145 def log_prior(theta):

146 t0,per ,a,b,c,rprs ,ars ,inc ,fp,irot ,m_star ,r_star ,lam =

↪→ theta

147 b_inc = ars * np.cos((inc*np.pi)/180)

148 if (200.0 < lam < 300.0) and (1.0>rprs >0.0) and (3.5>

↪→ ars >2.0) and (b_inc <1.0) and (110.0 > inc > 80.0)

↪→ and (a >0.0) and (b >0.0) and (c >0.0) and (m_star >0)

↪→ and (r_star >0):

149 #print theta

150 return 0.0

151 else :

152

153 return -np.inf

154

155

156 def lnlike(theta ,data ,return_obnvsin = False ,plot=False):

157 t0,per ,a,b,c,rprs ,ars ,inc ,fp,irot ,m_star ,r_star ,lam =

↪→ theta

158 parallax = 4.8625

159 vsini = 111.4 ### km/s

160 beta = 0.24

161

162 ### Isochrone ###
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163 observed_mags = np.genfromtxt (" gravdark_isochrone/

↪→ observed_mags",invalid_raise=False)

164 theta_sm = [m_star ,r_star ,irot]

165 lnlike_star ,oblateness = isochrone_lnlike(theta_sm ,

↪→ observed_mags ,parallax ,vsini)

166

167 m,fratio = model(theta ,data ,oblateness ,vsini ,beta ,

↪→ fratio_need=True ,plot=plot)

168 # print ’fratio ’,fratio

169 data_all = np.concatenate ((data[0],data [1]),axis =1)

170 x = data_all [0]

171 y = data_all [1]

172 yerr = data_all [2]

173

174 chisq1 = np.sum(((m-y)/yerr)**2)

175

176 lnlike_dt = DT_function.run_doppler(t0,per ,rprs ,ars ,

↪→ inc ,lam ,irot ,m_star ,r_star ,vsini ,beta ,fratio ,plot

↪→ =plot)

177

178 lnlike_all = ( -0.5* chisq1) + lnlike_star + lnlike_dt

179 print ’lnlike simutrans ’,lnlike_all

180 if return_obnvsin:

181 return oblateness ,vsini

182 else:

183 return lnlike_all

184

185 def log_prob(theta ,data ,plot=False):

186 t0,per ,a,b,c,rprs ,ars ,inc ,fp,irot ,m_star ,r_star ,lam =

↪→ theta

187 lp = log_prior(theta)

188

189 lnlike_model = lnlike(theta ,data ,plot=plot)

190

191 if not np.isfinite(lp):

192 return -np.inf

193 else :

194 return lp + lnlike_model

195

196 if __name__ == "__main__ ":

197 data14 = pickle.load(open(’data_KELT9_short_PDC_14.pkl

↪→ ’,’rb ’))

198 data15 = pickle.load(open(’data_KELT9_short_PDC_15.pkl

↪→ ’,’rb ’))

199

200 ##Mask weird transit out##

201 ## Only for sector 15 included ###

202 index1 = (data15 [0] <1724.93585)

203 index2 = (data15 [0] >1725.94321225)

204

205 data15 [0] = data15 [0][ index1 | index2]
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206 data15 [1] = data15 [1][ index1 | index2]

207 data15 [2] = data15 [2][ index1 | index2]

208 data = [data14 , data15]

209

210

211 ### Constant ###

212 nwalkers = 100

213 start_point = []

214

215 ### Initialized starting point ###

216 with MPIPool () as pool:

217 if not pool.is_master ():

218 pool.wait()

219 sys.exit (0)

220

221 ndim = len(start_point)

222

223 print ’Result from minimize ...’, start_point

224

225 pos = np.zeros((nwalkers ,len(start_point)))

226

227 n = 0

228 sd_start = []

229 while True:

230 n = n+1

231 print ’Round ’,n

232 for k in range(nwalkers):

233 for j in range(0,len(start_point)):

234 pos[k][j] = np.random.normal(

↪→ start_point[j],sd_start[j]) ##

235

236 logprob=np.zeros(len(pos))

237 okay = np.zeros(len(pos))

238 for p in range(len(pos)):

239 logprob[p]= log_prob(pos[p],data ,plot=True)

240 print logprob[p]

241 okay = (~np.isnan(logprob)) * (logprob != -1*

↪→ np.inf)

242 print (pos[okay== False ])

243 if all(okay) == True:

244 print ’Got that!!!’

245 print okay

246 print logprob

247

248 break

249

250

251

252 sampler = emcee.EnsembleSampler(nwalkers , ndim ,

↪→ log_prob ,pool=pool ,args=[data])

253
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254

255 print ’Burning -in...’

256 t0 = time.time()

257 pos , prob , state = sampler.run_mcmc(pos ,2000)

258 t1 = time.time()

259 total = t1 -t0

260 print total

261 chain_burn = sampler.chain

262 pickle.dump(chain_burn ,open(’

↪→ chain_KELT9_burn_proj_1.pkl ’,’wb ’))

263

264 sampler.reset()

265

266 print ’Running MCMC...’

267 t2 = time.time()

268 sampler.run_mcmc(pos , 4000)

269 t3 = time.time()

270 total_run = t3-t2

271 print total_run

272 chain = sampler.chain

273 print chain

274 pickle.dump(chain ,open(’chain_KELT9_all_proj_1.pkl

↪→ ’,’wb ’))

275 pool.close ()
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