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ABSTRACT: We calculate the invisible decay width of Z-boson decays to two dark matters
final state in a gauge-invariant-simplified model of dark matter-neutrino interaction frame-
work. We find that in the case of a scalar dark matter, the amplitudes for this process
involves with three-point scalars functions which have different massive internal lines. We
compute the scalar functions in the analytic expressions based on 't Hooft and Veltman

work.
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1 Introduction

Evidence from astrophysics and cosmology points to the fact that the Universe is filled
with a large quantity of non-relativistic matter that is weakly interacting. Determining the
nature of the dark matter (DM) remains one of the primary open questions in understanding
of particle physics. A wide variety of experiments are currently on search of DM interactions
in the lab and sky, and evolve the new data to constrain the theoretical model.

Experiment at the Large Hadron Collider (LHC) has played an important role in ob-
serving the interaction between dark matter (DM) and the Standard Model (SM) particles.
Because DM is invisible to the LHC detectors, its LHC signature involves a visible object
that depends on the detail of SM particles interacting against the invisible DM. For under-
standing the nature of dark matter, we consider the gauge-invariant-simplified DM-neutrino
interaction Model which enriches collider signatures of the dark sector. This model allows
us to calculate an invisible decay width of Z-boson to two DMs through fermion one-loops
diagrams. For most approaches to the calculation of one-loop amplitudes, the knowledge
of scalar one-loop integral is sufficient. The methods used in the literature are based on
the work of Passarino and Veltman and 't Hooft and Veltman which are the techniques
for reducing the tensor integrals to scalar integrals. This work therefore concentrates on the
integrals with different massive internal lines and these integrals can be evaluated analyti-
cally. We can therefore enhance the collider signatures by using the results of the invisible
decay width to constrain our model scenario.

Our work is organized as follows. In section 2, we review the techniques to calculate
one-loop integrals in the general way. In sections 3, we present the Lagrangain and couplings
of the dark matter and mediator to each other and with the SM. In sections 4, we compute
the amplitude for the Z-boson decay into 2DMs and in sections 5 derive the decay width
of this process. We conclude and discuss in section 6.

2 One-Loop Calculations

In this section, we review traditional techniques for the one-loop calculations using in the
sequel. We derive an analytic expression for scalar-one loop integrals (one, two and three-
point functions) based on 't Hooft and Veltman’s work and also investigate tensor integrals
that can be reduced to linear combinations of scalar integrals times an external kinematic
parameters (external momenta) known as Passarino-Veltman’s reduction.

2.1 Passarino-Veltman Reduction

Most of the computations of one-loop integrals associates with tensor integrals. The Lorentz
covariance structure of the integrals allows us to decompose the tensor integrals into tensors
constructed from the external kinematic parameters (external momenta p;), and the metric
tensor g,,, with totally symmetric coefficient functions (scalar integrals). This techniques
is purposed by Passarino-Veltman in 1979. We will try to explain them and therefore
summarize all of the integrals using in this work. Here, we use the same conventions
presented in [6].



2.1.1 Reduction of Two and Three-Point Functions

Using the Lorentz decomposition of the tensor integrals the invariant functions can be
reduced to scalar integrals. For tensors rank 1 and rank 2 three-point functions, it can be
expressed as

CH = plfcl —i—ngQ (2.1)
2
CH = g"Cyo + Z pfp}’()’z-j, where Cy1 = C19 (2.2)
ij=1

We contract Eq.(2.1) with p; and py, we obtain the numerators expressed in term of the
denominators.

1
l‘plzﬁ(fl‘FdQ_dl)a fi=m3—mi —pi,
(2.3)

1
l'p2=§(f2+d3*d2), fo=mj—m3—p3—2p1-p.
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Where d; = <l + 22;11 pk> —m?,i=1,2,3,... For C*, we obtain the following results.

‘ 1

RE] = p1,C* = piCi + (p1 - p2)Cs = 3 (f1Co(1,2,3) + Bo(1,3) — Bo(2,3)) (2.4)
¢ 1

RY = py, O = (p1 - p2)Cy + p3Cy = 5 (£200(1,2,3) + Bo(1,2) — Bo(1,3)) (2.5)

We find a system of equations,
R[f] _(Pp1-pr prop2 Ch
Rl pi-p2 p2-p2) \ Co

Cr\ _ 1 pPL-p1 —P1- D2 Rl (2.6)
Cs ppd—(p1-p2)® \ —p1-p2 p2-p2) \ RY

For rank-two tensor, contract Eq.(2.2) with p; and p2 we obtain

We obtain,

RYY = p1,C" = p¥ (p1 - p1Cu1 +p1 - p2Cia + Coo) + 1% (01 - p1Crz +p1 - paCa) (2.7
1
=5 (hC"(1,2,3) + B(1,3) - B"(2,3))
RYY = pouC" = pY (pr - p2C11 +p2 - p2C12) + 1 (91 - p2C1a + p2 - paCoz + Coo) (2.8

_ % (f2C"(1,2,3) + BY(1,2) — B*(1,3))

Inserting Lorentz decomposition of R[lc]y and R[zc]y,

R[lc]u _ R[lcl]p,l, + R[ICQ}pg

R[;]V _ R[zcl]pll, + R[202}p5



This gives

Rpy = 2 (1C5(1,2,3) + Bi(1,3) — Bi(2,3)) pl (2.10)

N =N -

When B¥(2,3) is decomposed as follows

ll/
BY(2,3) = — [ d%
(2,3) 172/ ((L+p1)2—m2)((I +p1 +p2)2—m§)
— L 4% " —pf
im? (12 = m3)((I + p2)? — m3)

1, & 1

= b1

B d
= N E ) W/dl((upl)—m2><<z+pl+p2> =
By(273) = p5B1(2,3) - 1B0(2?3)

and also
R p %(f201(1,2,3) +B1(1,2) - B1(1,3)) py (2.11)
Ry %(fzcgu 2,3) — Bi(1,3)) b (2.12)
Thus,
R[fu =p1-p1C11 + p1 - p2Ci2 + Coo = % (f1C1(1,2,3) + Bi1(1,3) + Bo(2,3))  (2.13)
RS = p1 - paCiy +p2 - paCia = : 5 (f201(1,2,3) + B1(1,2) - Bi(1,3)) (2.14)
R[fm =p1-p1C12 + p1 - p2Cap = (f102( ;3) + B1(1,3) — B1(2,3)) (2.15)
Rg;z} = p1 - p2Ci2 + p2 - p2Caz + Coyp = 3 (f202(17 2,3) — B1(1,3)) (2.16)

We obtain a system of equations,

Cin\ 1 p1-p1 —P1- D2 it

=55 5| _ [e1] (2.17)
Ci2 pip; — (P1 - p2) p1-p2 p2-p2 ) \ T,
C12 1 pL-p1L —PL-D2 nls

— 1

=55 5| _ (2] (2.18)
Cao pip; — (P1 - p2) p1-p2 p2-p2 ) \ T,

Where T = RN — cpo, TV = RN, 719 = BRI and T = R — ¢y
To get Cog contract Eq. (2.2) with g, we have

w_ gP=mi s (1], ple?
guwC! d®l +miCo = DCoo + 17 + 1T,
dydads
Coo(1,2,3) = m( miCo(1,2,3) — faC5(1,2,3) — f1C1(1,2,3) + By(2,3)) (2.19)



Following from the above process, we have an expression for two-point functions summarized
in the below. For tensors rank 1 two-point functions, it can be expressed as

B* = p"B (2.20)

Where p is the external momentum. By contracting through with p the form factor can be
expressed entirely in terms of scalar integrals. The results are,

Bi(1,2) = ?[leo(l ,2) + Ao(1) — Ao(2)] (2.21)
1

Bi(1,3) = 5o (1 + 2)Bo(1.3) + Ao(1) = 40(3)] (2.22)

Bi(2,3) = 2; ((fo + 291 - 2)Bo(2,3) + Ao(2) — Ao(3)] (2.23)
2

2.2 Scalar Loop Integrals

With techniques using in the last section all one-loop integrals can be reduced to scalar-loop
integrals. Here we derive the general analytic results for one-point (Ap), two-point (By)
and three-point (Cj) scalar integrals based on 't Hooft and Veltman’s result presented in

2].

my

(2) One-point scalar loop (b) Two-point scalar loop

Figure 1: The one-point and two-point Green functions, the corresponding expression will
be discussed below

2.2.1 One-Point Function

4—d 1
Ao(m2) = H /ddllnlz

im?
2-2

d/
= —m?r /22 (T/j?) (1 —d/2)

)d/2_1(/"2)2_d/2



When d =4 — ¢, we have 7%/272 =1 — 5lnm, (
and (1 —d/2) = — (2 — v +1)

tw‘ 3
N———
R
~
NJ
l\')
Il
/~
[u—
\
[NelleY
—
B
“:M‘ 3M
N———

+1—-1In /72> where eYenfi® = p? (2.24)

2.2.2 Two-Point Function

2. o o pY d 1
B ; = d®l
o(p"smi, m3) im? / (12 —=m2)((I +p)2 — m2)

Introducing Feynman parameters in denominator and shifting the momentum. We get,

D= (1—az)(I* = mf) +z((l +p)* — m3)
=P 4 2z(1—2)p* — (1 —2)m3 —am3
D=P-A A=zx(z—-1p*+ (1 —x)m? + zm3

We have,

By (p*;m3, m3) 27r2 / dx/ddl P
d/2-2
= 792721 (2 d/2)/ d:c<A2>
0 H

9 1 2,2 ()2 2 _ 2 2
= ( — Ve —ln7r> —/ dz In (@ = er; my)x + mj)
€ 0 K

Where A = p?(z — x1)(z — 22) = 2%p? — (p? + m2 —md)z + m?

and :cl,xgzﬁ((pQ—l-m% m3) £ A\V2(p?,m2,m3)) = n+ An
Ma,b,c) = a® +b? + ¢ — 2(ab + ac + be)
Consider,

/01 dzln((z —21)(z — 22)) = =2 +1In (1 — 2y — x3 — 2122) — ln ((x x;iizx2)>
N (CE Y

2 _ .2
= —2—Ink? + In(myma) + L;nl In <m2>
p mi

B AM2(p2 m3, m3) I m3 +m3 — p? + A2(p%, m3, m3)
p2 2m1m2



Finally,

2 mim m2 — m2 m
Bo(pQ;m%,mg)Z<6—%—ln7r>+2—ln( 122)+ — 21n<2>

1Y p my
2R md ) (md md 4 A2 md )

p? 2mymo
2. 9 9y _ 2 mima mi—m3 [ ma
Bo(p~;mi,m3) = = +2—In ~3 + 2 In { —=
€ v p mi

5 )
p 2m1m2

2.2.3 Three-Point Function
23
/

p1
my

T

p3

Figure 2: Three-point scalar loop

1
C, 2’ 2;m2’m2’m2 :/ddl
0(P1, P23 M1, M, 3) im? (2 =m)((L+p1)2 —md) (I + p1 + p2)? — m3)

Introducing Feynman parameters in denominator and shifting the momentum
(0= 1—=pi1(1 —y) —p2(l —x)), we get

D =y(® —m}) + (= y)(( +p1)? =m3) + (1 = 2)(( + p1 +p2)? —m3)
=12 — ply? — p3a® = 2p1 - powy + (M3 —m3 + p3)a + (m3 — mi + pt + 2p1 - po)y — m3
D=P+a’+bfl+cay+det+ey+f=02-A ,A=—(azx® +by’+cary+de+ey+f)

Where
a=—p3
b= —pf
c==2p1-pa=—(p1+p2)’ + 1} + P} (2.26)
d= (m%—m%er%)
e = (m3 —m}+p? +2p1 - p2)
f=-m



Then

cu sttt md) = TG e [Cay fan [T s

_ i@ m2 (A)PIT(3 — d/2> (d/2)
- im? / /dy I'(d/2) '(3)

—1 d dj2—
= 7r2/ dl‘/ dyr®?(A)2731(3 — d/2)
0 0

Hence around n = 4 we have

1
1
Co(p2, p3; m3, m2, m> :/ dm/ d
o(p1, p3; My, my 3) 0 0 ya;p2+by2+ca:y+d:c+ey+f

The problem of above integral is the appearance of the two quadratic contributions z? and
y?, we make the change of the variables, namely
Yy = y' + ax
We get
D' =az® +b(y + ax)* + cx(y + ax) + dz +e(y + ax) + f
= (ba2 + ca + a) 22 + by? 4+ 2y (c + 2ab) + z(d + ea) + ey + f
Where « parameter is one of the roots of the equation
b’ +ca+a=0 (2.27)
Without loss of generality, we may select one of «, for example
_ p1-p2+ VA3
- _.2
151

Where Az = (p; - p2)2 — p%p% is the corresponding Gram determinant. then the denominator
reads
D' = by + zy/(c + 2ab) + z(d + ea) + ey + f

Which becomes linear in . Now we are going to perform the series of the change of the

variables
(1-—a)z 0 1 1-a 1
/daz/ dy—/da:/ dy/:/ dy//,d:c—{—/ dy//,d:c
- oS e

This gives

0 1
Co= / dy' ! In (by”? + 23/ (c + 2ab) + z(d + ea) + ey’ + f)

—a Y(c+2ab)+d+ e Y

11—«
dy’ In (by/? ! 20 d !
+/0 yy’(c+2ab)+d—|—ean(y +$y(c+ a)+x( +ea)+ey+f)

11—«
B Od, 1 | by? +y'(c+2ab+e)+d+ea+ f
_/_a yy’(c+2ab)+d+ea nby’2—y’2(0+2ab)/a—y’(d+ea)/a+ey’+f
+/1_0‘ y 1 o by? + 4/ (c+2ab) +d+ea+ey + f
0 y'(c+2ab) +d+ea  by?2+y2(c+2ab)/(1—a)+y(d+ea)/(1—a)+ey + f



Let us define N (y') = ¢/(c + 2ab) + d + ae , we have

11—« 1
C—/ dy ——n (/> +ey + f+ N (v
0= W (by” +ey + f (v))
/Od/ 1 1 b/2+e/+f7y7/N(/)
SNy
1 /

—a 1 y
_ / 1 2 / N (4
/0 dyN(y/)n<by + ey —|—f+1_a (y))

Notice that expression 1/N(y’) has singularity at yo = —(d+ae)/(c+2ab). In order to have
residuum equal to zero at yy we add to every integral the expression — In (byg + ey + f)

11—« 1
Co= [ sy (0 e/ +7 4N () o (o +evo 1)
0 ;1 12 / Y / 2
_/adyN(y’) In { by"* + ey —|—f—EN(y) —In (byg + eyo + f)
11—« /

;1 2 / Yy / 2
—/0 dyN(y/) {ln(by + ey +f+1_aN(y)> —ln(by0+eyo+f)}

This additional term allows studying the integrals with complex a. Now we make the
substitution ¥’ =y —a, y = —y'/a and y = y'/(1 — «) respectively.
And also yo1 = yo + @, Y02 = —yo/ a and yo3 = yo/(1 — ) when N (yo) = 0.

We have

1 1 dy
Co = / In (by? +y(e+c)+a+d+f)—In(byd + (c+e +a+d+
°7 (c+2ab) Jy y_ym{ (by* +yle+o) f) —n (bygy + (c + €)yor )}
* 1 /1 . {In (ay? + dy + f) — In (aygy + dyo2 + f) }
(c+2ab) Jo y —yo2 02
_ 1 /1 dy {ln(yz(a-i—b-l-c)-l—y(d—l—e)—f—f)—ln((a+b+0)y(2]3_|_(e+d)y03+f)}
(c+2ab) Jo y—yos
1
(C+20éb)[ 3(3/017’y11,y21)+ 3(y02,y12,y22) 3(y03,y13,y23)]
1
C = S 5 5 S 3 ) _S ) ) 228
0 2\/A73[ 3 (Yo1, Y11, y21) + 53 (Yo2, Y12, Y22) 3 (Y03, Y13, Y23)] ( )
Where
- +a__ac+2a+d+ae
yor = 4o N c+ 2ab
__@__d—}—ae
o2 = a  ac+2a
Yo d+ ac
Yoz = =

l—a  c+2ab+ac+2a
y11 and yo; are the roots of by? +y(e +¢) +a-+d+ f =0, y12 and yao are the roots of
ay® + dy + f = 0 and y13 and ys3 are the roots of y?(a +b+c)+y(d+e)+f=0



Consider the integral

1
Ss (?JanlaQQ):/ dy [In (ay® + by + ¢) — In (ayg + byo + ¢) ]
0

Y—Y0

where a is real, while b, ¢ and yy. may be complex, with the restriction that the imaginary
part of the argument of the first logarithm has always the same sign in the y range [0, 1]
Let

—b+ Vb2 — 4dac
ay? +by+ce=aly—uy)(y—1w), vi2= o

Notice that

b c
aly—y) (Y —y2) =ay® —ay (y1 +y2) + ayaye, — (y1 +y2) = o =

For arbitrary y imaginary parts read —alIm (y1 + y2) + alIm (y1y2) while for y = 0
reads aIm (y1y2). Thus, the sign of —alIm (y; + y2) + a Im (y1y2) must be the same sign as

alm (y1y2).
Let € and 0 be infinitesimal quantities having the opposite sign to the imaginary parts of
the arguments of the two logarithms.

In(a(y—y1)(y—y2) = In((a—ie) (y —y1) (v — y2)) = In(a —ie) + In ((y — v1) (y — y2))

In (a (yo — y1) (Yo — y2)) — In((@ —id) (yo — y1) (yo — y2)) = In(a—id)+In ((yo — y1) (Yo — y2))
Then

1
S3 = /0 dyy —1yo I ((y —y1) (y —y2)) —In((yo — y1) (Yo — y2)) + In(a —i€) — In(a — id)]

= /01 dy—— [ln<(y —y1) (Y —v2)) —In((yo —v1) (o —y2)) —n <a — 6 a—lzﬁ)]

Y—%Yo

1 1
~ [la [hl((y—yl)(y—w))—ln((yo—y1)(yo—y2))]—77(a—iﬁ,a_li(S)/0 o

When

In(ab) =Ina+Inb+ n(a,b)
n(a,b) = 2mi[0(— Im(a))0(— Im(b))f(Im(ad)) — 0(Im(a))O(Im(b))0(— Im(ad))]

1 —
53:/0dyy_lyo[ln((y_yl)(y_yQ))—ln((yo—yl)(yo_y2))]_77<a_i€, 1 )m(yo 1)

1
1
53:/ dy [ln(y—y1)+ln(y—y2)+77(—y1,—y2)
0 Y=Y

. 1 —1
—ln(yo—yl)—ln(yo—yz)—n(yo—yl,yo—yz)]—Tl<a—26, . >1n<y0 >
a — 10 %0

Finally,

1 1
S3 = R(yo,y1)+R (yo,y2)+ |0 (—y1, —y2) =1 (Yo — y1,%0 — y2) — 1 (a — i€, )} In (yo )

~10 -




Where R integrals are evaluated as follows

1
R (yo, 1) = /O dyy_lyo {In (y — 1) — In (yo — v1)}

Now we make the change of the variables y — y — 1

1—-y1 1
=/ dy— L {Iny —In(yo — 1)}

-y Y+yr—Y
1

1-y1 yl
= dyi Iny —In(yo — 11 / ————{lny —In(yo — 1)
/0 y+uy— { ( } y+y1_y0{ ( }

Changing the variables y = (1 — 1)y’ and y = —y1/ respectively. Using partial integration
and dilogarithm identity e.g. Liz(z) = — Liz(1 — 2) + g7 — In(z) In(1 — z). we get

— 1 1-— 1
Yr — Yo Yo — U1 Y1 — Yo Yo — U1
1_
+L12< L )—L12< yo)
Yo — U1 Y1 — Yo

2.3 Some Useful Integrals

2.3.1  Co(m3,0,0;m3,, mé,, m¥,)

This physical expression is important for Higgs decays to two photons calculation through
W-boson loop and fermion loops. The previous result is given in [12].

By using Eq. (2.26) with (p; + p2)? = m%{ — 2p1 - po = m%{, p? = p% =0
Wehave,a:b:d:O,c:—m%{,e:m%{ andf:—m%[,

We will try to derive it in two different ways.

(I) First : Direct Calculation

1
Co(miy, 0,0; miy, miy, mi /d/d
o(mi, 0,05 miy, miy, myy) = €L ymHy(l—:z:) 3

myy
1—a’
:/ dx/ dy—————
m3yx’ —
1—a’ 2
m
:2/de/ dyﬁﬁz o

1 1—a/
— dx’
m2, /0 a:/o 1—4Tmy

/1dx, 1n(1—4m (1—2"))
0

2
My

B /
47'mW dT a:/
_ 4(1—2a)
N 4TmW/dT/dx1—4Tx(1—:r’)

/

— 11 —



We explore the integral in da’. We shift 2/ — 2/ + 3

/d, 4(1—a) _/%dx/ 43—
L—dre’ (1—a')  Jo1 " 1—47 (3 —2?)

1
2

The domain and the denominator are symmetric to ' — —2’, so we can drop the odd term
in the numerator.

1 1
2 2 1 2 2
/ dz’ ; = /2 dz’
T N e o’ I R ) 14 (9T
2 2 + mx

N

arctan 2

1 /
= — T
V(1 =1 Vi-1 |
1 V! 1
=2———— arctan T =2——— arcsin \/77

(1 —17) V-1 VT (=1

Finally, we can integrate with respect to 7':

N

Co(m?,0,0;m3y, miy,, méy) / arcsinﬁ
47’mW /T
1
=—— / arcsin ﬁ d(arcsin V'7')
TmW 0
2 . 2
=— 5 arcsin® /7
drmi;,
The arcsin can be analitically continued for, 7 > 1, giving
arcsin?(y/7) for 7<1
T) = — 2
H —i lni'\/t Vt:i—iw] for 7>1
Thus,
-2
Co(m?;,0,0; m2,, m¥,, m? 2 2.29
o(mi, 0,05 miy, miy, myy ) = 4me( f(m) = m%{f(T) ( )
(IT) Second : Traditional Technique
2 2 2 2 ! ! 1
C’o(mH,O,O;mW,mW,mW):/ dy/ dx
0 y m%{y(l —x) — m%v
L)
= — —In
-my Jo y o \myy(l —y — miy
1 /1 dy n
N qu 0o Y 47'y —47'y+ 1 4mW
1 1
=— {ng(l/yl) —I-ng 1/y2 / 7y 47'y1y2)] , dty1ye =1
—my oY

- 12 —



Where y; and y are the roots of 47y — 47y + 1.
Using the dilogarithm identity Lis(2) + Lis(z/(z — 1)) = —3 In?(1 — z), we get

-2
CO(m%{’OaO; m%[/vm%/lhm%/[/) = 72]((7-)
My

In this case, the denominator is 1/(c+2ab) — 1/c = —1/m?% (a = 0). All 5- function and
the terms coresponding to Lia (yo/(yo — vi)) vanish since it is real and have no yy.

2 2.2 2 92
2.3.2  Co(m3y,0,m%;miy, miy, miy)

This expression is important for Higgs decays to Z-boson and photon calculation .
Using Eq. (2.26) with (p1 + p2)? = m% — 2p1 - p2 = m% —m%, pi = m% and p3 =0
We have , a =0, b= —m%, c=m% —m%,d=0, e =m% and f = —m?,

1 x 1 1 1 1
Co= [ d d — /| d d
0 /0 m/o Yoyt ey tey + f /0 y/y b+ cay+ey+ f

1/1dy <by2+(0+6)y+f>
= - —1In
clo ¥ (b+c)y> +ey+f

:1{/16@111((?;1y)(y2y))_/1dyln<(y3y)(y4y)>_/1dyln<4rzylyzﬂ
clJo Y Y1Y2 0o Y Y3y 0o Y ATHY3Y4

_ _% [Lig(1/y1) + Liz(1/y2) — Liz(1/y3) — Lia(1/y4)]

Where y1, y2 Z%ﬂ:%\/l—TZ_I ,and yg,y4:%:|:% 1—7151

with 7 = m%, /4m¥,, 772 = m%/4m?,
Finally,
-2
Amiy Co(my, 0, mZ; miy, miy, miy) = ————[f(2) — f(rm)] (2.30)
Tz — TH
Which differ from Djouadi’s result [11] by how they define the sign of the dilogarithm
function.

3 Minimal Dark Matter-Neutrino Interaction : Simplified Model

Here, we start from the simplified model for DM-neutrino interaction presented in the
previous work [1]. They make an assumptions that DM, x, a mediator, ¢ (or ¢ for a
fermionic mediator), and the SM fields are the only light degrees of freedom. The rest of new
physics particles are heavy and decoupled. In this simplified scenario, the renormalizable
interaction between DM and neutrino is given by

YPrveo + h.c. fermionic DM,
Lins = {Z/X V) (3.1)

yyPrvx + h.c. scalar DM
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Where y is the DM-neutrino coupling constant. In this work, we will assume that DM is not
its own antiparticle. To preserve SU(2) gauge invariance, we embed our neutral messenger
into a SU(2) doublet with hypercharge ¥ = —1/2

d = (f_ ) ,  fermionic DM

(3.2)
U= Q’Z)_ ,  scalar DM.
(4
Thus, the SU(2) invariant DM-neutrino interactions become,
ylPrx® + h.c., fermionic DM
Lint = _ (3.3)
ylPrVx + h.c., scalar DM

For the scalar DM case, we should introduce ¥ in a vector-like representation to avoid
gauge anomaly. Also in the scalar DM case, we can impose Zs symmetry in which y and
¥ are odd while all the SM fields are even to avoid ¥ — [ mixing.

4 The Evaluation of the Amplitude

The model in Eq.(3.1) allows us to calculate an invisible decay width of Z-boson decays into
two scalar-DMs through fermion-one-loop diagrams. Since gauge-invariant structure of the
model implies our model to be renormalizable, this absence of direct couplings of Z-boson
to dark matter () at tree-level implies that one-loop contribution to the decay through the
possible loops presented in Figure 3 must necessarily be finite (or there is no counter term
to absorb the divergence of loop calculations). So, there is no need to renormalize and we
expect that the decay width is finite.

P P1
— —
"""""" X r-——-———""=""""X
A [+ V [+ p
"""" l"'I """"I"'Z
D2 P2
(a) (b)

Figure 3: Possible Feynman diagrams for Z-boson decays into scalar-2DMs
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4.1 Loop Calculations

We will calculate the corresponding amplitudes presented in Figure 3 that can be extract
to 5 sub-diagrams. Here, we omit the polarization vectors of the incoming Z-boson.

Since the four momenta of the Z-boson is p; + p2, we have 2(p; - p2) = m2Z — 2mi when
p% = p% = mi Also, the opposite fermion flows in the two diagrams leads to a relative sign
between them. For the loops with neutral particles, we have

4.1.1 17 (¥° —v—¢°)

1z :gfo/ d'l T [(J+m +po+my) " (I +my) Pr (I +pi +mu) Pr]
(2m)* [12 - mw} [(l +p1)° — mg] [(l +p1+p2)’ - mfp]
_ o / d T [(L+p+m) v (1) (T +m)] +m2 Te [y ([ + )]
2 (2m)? [ZZ - mﬂ [(l +p1)? - m,%] [(l +p1+p2)? — mi]

Here, we find the €”#7p1,p2,1, term that must be vanish when we shift the momentum /.

1% :2920/ d*l (L +p1+p2)*(- (L4 p1) = (+p)*(L- (+p1i+p2))
v (2m)* [12 ][H—pl ) —m2 [l+p1+p2 —mw}
207 A (L +p1+p2) - (L+p1)) +2(0+ pr)Hms,
2 B ] ]

+p1 +p2)’ —mﬂ

p g [ dil U Pph + 20 p)lt + (9 + p1 - p2 + m)F — (L pa)pl + (L p1)ph + mEpy

2m)* [12 - mfb] [(z +p1)* — mﬂ [(l +p1+p)” - mﬂ
(4.1)

Applying Passarino-Veltman’s reduction in the section 2.1.1 for each term above , we have

1 1211 1 12 — m2)m 1 m2 [+
— [ == ai T — [ di
(i d1d2d3 i d1d2d3 17 d1d2d3
1 a4,
= [—— 1,2
in? dods +mgCH(1,2,3)
L[ gy B YB1(2,3) — p/!Bo(2,3) + m3CH(1,2,3)
im2 dlde = Py D1 0\4, mw ) 4y
1 12pt s (52 —m?2 NE P m2 [*
a2 =2 A JANN B L) s Y 208 Co (1,2
i dydods  in? didyds | in? didody ~ P2P0(2:3) +mypy Co(1,2,3)
1 2(l -pl)l“ 1 d (d2 —d; + fl)l“ 1 d * I fil*
— [ 4= = dl = — [ d4 -
Z'7'('2 d1d2d3 Z7T2 d1d2d3 1:7'1'2 dldg d2d3 “t d1d2d3

= (p1 +p2)“31(1,3) —pSBl(2,3) +p1B0(2 3) + f1C’“(1 2 3)
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PT+Dp1-p2+ mi
im2

d s 2 2 m

1 (=l -po)py  —p (d3 —do + fo)l*  —pl
— [ d¥ L — 1/aldl = —1(By(1,2) — Bo(1,3) + f2Co(1,2,3
i7T2/ dydads 2472 dydads 2 (Bo(1,2) 0(1,3) + 2Co(1,2,3))

1 (L-p)pt P / (do —dy + f1)I*  ph
— [ d L— 22 [ g% = 22(By(1,3) — By(2,3 Co(1,2,3

Where we omit the constant p for simplicity. Thus, Eq. (4.1) becomes

167217, m2 (2my, + fu)ph  (2m — f2)p}
oz = (il =Y SA)0M(1,2,3) + | + Co(1,2,3)
gw()
w Iz
+ M
+2B0(2.3) - LBy(12) + (o + 22 Bu(13) + PP gy )
Where f; :mg—mi—mi, fa :mi—i-mi—m?,—m%
and B1(1,3) = 5552 [(fi+£2) Bo(1,3)+Ao(1) = Ao(3)] 5 Ao(1) = Ao(3) (ma1 = ms3 =my)
Then,
167214, m2 o o
22.95;” = (m +my, —m3 + =F)CM(1,2,3) + T Bo(2,3) = T Bo(1,2)
1
+ 3 [(mfb +m2 — mi)pg + (m2 +m?% — mi + mi)p’ﬂ Co(1,2,3)

C*(1,2,3) can be reduced by using Eq.(2.6) - Eq.(2.8).

_ M
PL_ [(m2 +3m2 —m2 — m%)Co(1,2,3) + Bo(1,2) — By(1,3)]

CH(1,2,3) =
( ) 4m§<—mZ

1

—Ds 2 2 2
— |[(m}, — Co(1,2,3 By(1,3) — By(2,3
4m§_m2z[( > —mi, +m3)Co(1,2,3) + Bo(1,3) — Bo(2,3)]

with By(1,2) = By(2,3) , we have

IZOZ

/A 2 2 2 2
9,0 Qmw +2mg — 2my +my 5 5 ) oy ) ) .y
1672 |: 4mi _ m2Z ((mz +my, — 3mx - m¢)p1 + (mw - mx - mu)p2)00(13 27 3)

2= ) (Bo(1,2) = BolL.3) b+ (G 4 m = o + o+ s =+ m )] (1,2.3)
+(r2 — 2 Bo(1.2)| (12)

Where Cy(1,2,3) = Co(m%,mi,mi;mi,m?,,mi), By(1,2) = By(2,3) = Bo(mi;mz,m?p)

and By(1,3) = Bo(m%,mfp,m?p)

~16 —



4.1.2 IZ (v—y°—v)

7 Z/ d*l T [(J4+m + o +mu) ¥ Pr ([ +my) Pr (] +m +my) Pr)
VAN

’ 2w [0 - ] [y o) ]
_ _2950/ d4l4 PI 4 Pply + 2(L- p)lI* + (7 + p1 - p2)l* — (L= pa)pl + (1 p1)ph
(2m) 2= m3] [+ p0)* —m2 | [+ +p2)* = mi2]

Applying Passarino-Veltman reduction, we get

ioZ [2m2 — 2m2 + m?
g Z
1f = e [ 2 (i o — i+ (o =~ ) C(1,2.)
X

+ (P2 = p1)"(Bo(1,2) — Bo(1, ))} + [(mi, + miy = m{)ph + (mf, +m —m3 —m)pi] Co(1,2,3)

+ (p2 — p1)"Bo(1,2) (4.3)

) -
Where Cy(1,2,3) = C’o(mQZ,m2 i,mz mfp,mg), By(1,2) = By(2,3) = Bo(mi;mg,m?p)
and By(1,3) = Byo(m%, m2,m?)

The divergence cancel between I 50 and IZ where gio = g7 = mzy?/v through the
contributions from By(1,2) (the last term) and among each contributions from By(1,2) —
By(1,3).

To check the results, contract with (p1 +p2), (momentum of the Z-boson). The results
must vanish due to gauge invariance (satisfy Ward identities).

For the loop with charged particles, we have

4.1.3 17 (v~ —1—97)

12 =gZ / d4l4 Tr[(I4+ 1 + p2 +my) ¥ (1 +my) P (1 + p1 +my) PRl
Crt e —ma) (@ p)? = mp| [0+ 1+ p2) — m3]

. 7 2 2 2 2
1gy - [2m3 +2m7 —2ms +m
z _ Y l X Z 2 2 2 2\, M 2 2 2\, 1
Iy = 67 [ 2 —m2 {((mZ +mi — 3my, — my,)ph + (my, —my, —mj ) Co(1,2,3)

+ (p2 — p1)"(Bo(1,2) — Bo(1, 3))} + [(mi +m? — mi)p’; + (mf 4+ m% — mi + mfj,)p’f] Co(1,2,3)
+ (p2 — p1)"Bo(1, 2)} (4.4)

Where Cy(1,2,3) = C’O(TrLQZ,mi,m2 mi,ml,m¢) By(1,2) = By(2,3) = Bo(m ml,mw
and By(1,3) = Bo(m%, m7, m3,)

Since the Z- boson can couple to both left- and right-handed charged lepton. We can
separate it into two (left and right) contributions. We have,
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4.1.4 17 (Ip(er) =y~ —lrler))

[ A— / df Tr[(l + p1 4 p2 + my) P (I +my) Pr (I + p1 +my) P
er, e 4
fI e ) [ p)? = md] [ o) - ]

- 7 2 2 —9 2 +m2
7z ey | ATy, T Ay z 9 9 ) Ny ) ) o
IeL - _167:2 [ 4m§< — m2Z ((mZ +my, — 3mX —mj)py + (mj — my — m¢)p2)00(17273)

+ (p2 — p1)"(Bo(1,2) — Bo(1, 3))} + [(m3 + mi —m2)ph + (m3, + my —m? —mi)p] Co(1,2,3)
+ (p2 — p1)" Bo(1, 2)] (4.5)

Where Cy(1,2,3) = C’o(mQZ,mi,mi;m%,mi,m%), By(1,2) = By(2,3) = Bo(mi;ml?,mi)
and By(1,3) = Bo(m%, m?, m?)

The divergence cancel between If_ and IeZL where gi_ = geZL = 2mzy? (—1/2 + S%U) /v
through the contributions from By(1,2) (the last term) and among each contributions from
BO(]-a 2) - BO(L 3)

Again, we can check the results by contracting with (p1+p2),. The results must vanish
due to gauge invariance.

4.1.5 IZ (lg(er) — v~ —lr(er))

7 Z/ d'l Tr [(/+ph +pp + mu) v Pr (I +mi) Pr (] + 1 + my) Pi]
er (

e 1
" [12 —mj] [(l +p1)° - m12/):| [(l +p1+p2)° - m?]
— 947 / d'l mi(l+ p1)*
= —2¢7 .
*J (2m) (12— m?] [(l +p1)° — mi] [(l +p1+pa) — mﬂ
167217
- 2 QR = Cu(17273)+p}f00(17273>
im;

Applying Passarino-Veltman reduction, we get

. 7 2
z . YYe 2m; 2 2 2\, p 2 2 2\ 1
IeR - _1671']; <4mi — mQZ [((mx + mi/) —my )pl + (ml —my = m¢)p2)00(17273)

+ (p2 = p1)"(Bo(1,2) — Bo(L,3))] (4.6)

Where geZR = 2myy? (s%v) /v, Cy(1,2,3) = Co(m%,mi,mi;m?,m?p,m%), By(1,2) = By(2,3) =
2

Bo(m2;m?,m2) and By(1,3) = Bo(m%, m}, m?)
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4.1.6 Evaluating Cp(m?%, mi, mi; m?2, M?,m?)

In our case, three-point function have m; = m3 = m and mg = M with p? = p3 = mi and
(p1 + p2)? = m%. We can derive an analytic expressions in the following.
Using the results in the section 2.2.3, we have

a:b:—mi

c:—2p1-p2:2mi—m2z

d=m?— M?+m} (4.7)
e:MQ—mQ—I—mQZ—mi

f=-m’

Solving the equation ba? + ca + a = 0 (choosing one of the roots of the equation),we have
g

2m2 —m% +mz, /m2, — 4m?
X X (4.8)

o=

2m§<
We get the general result as,
1
Co = (c+2aD) [S3 (o1, Y11, y21) + S3 (Yo2, Y12, y22) — S3 (Y03, Y13, Y23)] (4.9)
Where
—1
Sifa,0,6) = Rla,8) + Fla.e) + (- ~0) ~ (e~ b~ o]tn (“27)
and
a 1 l1—a l1—a
= -1 1-9 L —-L
ran = (2 ) (0t - (5= ) o (10 tg) +ri(05) 1 (52
(4.10)
When
_ _d+oae vt __ ¥ _ Yo
Yo = c 1 2aa’ Yo1 = Yo ) Yoo =—""" Yos=1_,
M? —m? +m?2 £ N2(M? m? m2)
Y1121 = o2
my
m? — M? + mi + A2(M?,m?, mi)
Y12,22 = o2
my
14 4/1—4m?2/m?,
Y13,23 = B

All n functions vanish if & and all the masses m; are real ( mz > 2m, ). « is real in on-shell
decay. In this case, the three-point function associates with 12-dilogarithm functions.
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5 Invisible Decay Width of Z-boson to 2DMs

Now, we collect all of the amplitudes and express it in the rest frame of decaying particle
(Z-boson). The four momenta of the external particles are ,

(pl +p2)u = (mZ707070)7 plf = (E70707p) and pg = (E7O707_p)

When E = mz/2 and p = (/m% —4m? /2. Contracting with polarization vectors of Z-

boson, we have
€u(pr+p2)t =0, i =-p and  €,ph=p
When €, = (0,1,0,0), e2, = (0,0,1,0) and €3, = (0,0,0,1)

Thus, the amplitude becomes
o
M =iy (IG +IZ + T2+ 12 + T2,

. 2 2 2 2
2imzy*p\ 1[2my, +2m; —2m; +my 2 2 2 2
M= < 1620 Tz m2Z (2mw + 2mX —2m;, — mZ) X
X

2

s Colmsm?, m2sm2, m2, m2) + 2Bo(m?; 2, m?) — zBo<mQZ,mz,,m3,>}

2m2 — 2m2 — m?2
X Y Z 2 2 2 2
4m§< — mQZ {(le, +2m) — 2my, — mZ)) X

2 2. 92 2 2
o T T, Ty, M) -

2 2
- mZCO(mva

2 2 2.2 2 9 2.2 2 2 2 2
x Co(mi, my, my;m,, my,m,) + 2Bo(my; my, my,) — 2Bo(mz,ml,,m,/)}

+ (2m?% — m%)Co(m%, mi, mi; m2, mfb, mz)}

16720 \ 2 G 2

5 P — {(Zmi + 2mi —2m} — mQZ) X
X Z

X Co(m%,mi,mi;mi, le, mi) + QBo(mi; le, mi) — QBo(m%,mi,mi)}

Zmi — 2mi — mQZ

2

2 m2im2, m2, md) +
4m>2<—mz

vax; mqj)?ml ’ mqj;

—m%Co(m%, m {(2ml2 + Qmi — 2m12p - mZZ) X

2 2 2 92 2 92 2.2 2 2 2 2
x Co(mi, my, my;my,my, my) + 2Bo(my;my, my,) — 2Bo(mz, m; 7ml)}

2imzy? 2m?
2 2 2 2 2. 92 9 9 ZY'P o l
+ (le _mZ)CO(mvaXamxvml7mw7ml):| + 16720 Sw (47)7& _mQZ> X

X (2m?< + 2mi —2m}) Co(m7, mi,mi; m%,mi,m?) + 2Bo(mi; m?, mi) — 2By(m%, m?, m})
(5.1)
We rewrite above expression as,
2imzy*p
— F 5.2
M < 16720 (5:2)
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In the rest frame of decaying particle (Z-boson), the decay rates for two-body final states
with equal masses (m, ) is given by

2

1
INZ — xx) = (m2Z — Zjlrni)l/2 X 3

> M

gen

167Tm22

Where we assume that for all of the generations of lepton have the same coupling constant y.
So, we can collect all of the contributions from any generations of lepton in the amplitude to
enhance the decay width of the process. Also, we have included the factor 1/3 for averaging
over all polarization states of Z-boson.

Thus we find the following decay width:

2

4
__YGr 2 4. 233/2
INZ — xx) = 614437 (mz — 4my) (5.3)

SF

gen

In figures below, we display the decay width I'(Z — xx) as a function of m,, (mass of DM)
for mass of the mediator m, = 20, 50 and 90 GeV when we let the coupling y = 1, mass
of Z-boson: mz = 91.1876 GeV and small neutrino masses : m, ~ 1 eV . Also, for x to
be stable, we must have m, < m,.

r r

0.066 0.20

0.064 |-

0.062 |- 0.18

0.060 |-

0.058 [ 0.16

0.056 |-

0.054 0-14r

1 ‘O 26 3‘0 4‘0 1 b 26 3‘0 4‘0
(a) (b)

Figure 4: The decay width for the decay Z — xx as a function of m, with (a) m, = 20
GeV and (b) my =50 GeV.

0.8
0.6
0.4+

0.2+

10 20 30 40

Figure 5: The decay width for the decay Z — xx as a function of m, with m, =90 GeV.
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6 Conclusions and Discussions

In this work, we have considered an extension of the DM-neutrino interaction scenario, intro-
ducing interactions to the dark sector via a SU(2) gauge symmetry with its corresponding
vector boson (Z-boson). The dark sector in scalar-DM case consist of a dark scalar ¥,
fermion mediator ¥ and lepton doublets (1) which constitute the DM relics. Therefore the
model allow us to study Z-boson decay to 2DMs and we calculate the decay width of this
process.

The amplitude is finite and respects gauge invariance as we expect from gauge-invariant
structure of the model to be renormalize because there have no tree-level couplings of DM x
to the Z boson. For most terms presented in this amplitude are in the form of scalar three
point functions with different massive internal lines that leads to 12-dilogarithm functions
plus a collection of simple logarithm functions associated with n-functions (we can neglect
the n-functions if we consider only for the physical process mz > 2m,, ). The rest of them
are in terms of two-point scalar functions which also have an analytic expression.

In Figures 4 and 5, the decay width increase when the mass of mediators (my) is
increased but we find the divergent behavior when we reach m, = my /2. For the physical
process, this divergence should not occur. Instead, it should smoothly reach zero when
my = myz/2. So, there must be a mistaken in the calculation of the amplitude that we
haven’t identified.

We can check the results of the three-point function by comparing the numerical values
with the other results, e.g. Denner’s result [4] and Oldenborgh’s result [5] which differ from
t’Hooft and Veltman result by how they shift the integrands to bring it into symmetric
form. Also, we can check the results by using the another solution of the a to evaluate the
three-point functions. The three-point function should not depend on how we choose the «
parameter in Eq.(2.27). The another way to check the results is by comparing the general
result given in section 2.2.3 and try to use them to evaluate the physical result presented
in section 2.3.

This calculation can be further employed to calculate direct detection cross-section of
the same model scenario when DM scatter with the nucleon of the detector by exchanging
the Z-boson particles.
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