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Abstract
We combinatorially prove identities relating the permanents of various classes of (0,1) Toeplitz matrices
to some sequences generated from linear homogeneous finite-order recursion relations with positive integer
coefficients and integer-valued initial conditions. This is done using a previously obtained bijection between
permanents of (0,1) Toeplitz matrices and the tilings of an n × 1 board with (12 , w)-fences, where w is a
nonnegative integer. A (12 , w)-fence is a tile composed of two 1

2 ×1 rectangular sub-tiles aligned horizontally
and separated by a gap of width w.� � � � � � � � � �
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A tiling of a 13-board with down F1, down F0, up F0, and up F3 (and so {−2,−1, 0, 3} ⊆ D) and

the corresponding permutation. The left post of each fence is labelled. A bar over the F denotes

a down fence. No bar indicates an up fence.

Background
The permanent of an n×n matrix M , whose (i, j)-th entry is denoted by Mi,j , is the same as the determinant
but with all plus signs. Permanents of (0,1) n × n matrices (i.e., n × n matrices whose elements are 0 or
1) give the number of permutations π(i) of i ∈ Nn = {1, 2, . . . , n}. We can view the entries in M as
detailing which permutations are allowed: if Mi,j = 1, then i can get mapped to j (i.e., π(i) = j is allowed);
otherwise, if Mi,j = 0, then π(i) cannot equal j. Here we consider restricted permutations where the only
allowed permutations are such that π(i)− i ∈ D, where D is a finite set. M is then a Toeplitz matrix. This
is a matrix with constant diagonals in the sense that Mi+1,j+1 = Mi,j for all allowed i and j. Permanents
of such matrices also have a combinatorial interpretation in terms of a class of tilings of an n-board with
(1/2, w)-fences (denoted by Fw) for selected nonnegative integers w. The two sub-tiles of a fence are referred
to as posts. As illustrated in the figure, an up fence has its left post in the left side of a cell on the board and
corresponds to a positive π(i)− i; a down fence has its right post in the left side of a cell and corresponds
to a negative π(i) − i. The π(i) = i case correponds to a fence with no gap (an F0) aligned with a cell
on the board. The combinatorial interpretation allows one to prove identities involving permanents using
a combinatorial rather than algebraic approach by counting the number of possible tilings using the fences
corresponding to the elements in D.

The Fibonacci numbers {fn}n≥0 are defined by fn = fn−1 + fn−2 + δn,0, fn<0 = 0, where δi,j is 1 if
i = j and 0 otherwise. We refer to a sequence of numbers defined by an analogous recursion relation with
arbitrarily many terms on the right-hand side but all with positive integer coefficients (the coefficients of the
δ’s can be integers of either sign; these define the boundary conditions) as generalized Fibonacci numbers.

Key results
� An expression relating permanents of odd dimension (0,1) Toeplitz matrices withD = {−1, 0, d1, ..., dk}
where the di are odd, positive, and distinct to permanents of even dimension Toeplitz matrices of the
same type and generalized Fibonacci numbers.

� A theorem that can be used to generate identities relating permanents of (0,1) Toeplitz matrices to
generalized Fibonacci numbers for 24 instances of D.
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� 7 new identities relating permanents of n × n (0,1) Toeplitz matrices with a particular D to various
types of generalized Fibonacci numbers.

Related resources
[1] Allen MA (2024) Identities relating permanents of some classes of (0,1) Toeplitz matrices to generalized Fibonacci

numbers talk www.youtube.com/watch?v=EAz28aafQJs.
[2] Edwards K (2008/2009) A Pascal-like triangle related to the tribonacci numbers. Fibonacci Quart 46/47(1),

18–25.
[3] Edwards K, Allen MA (2015) Strongly restricted permutations and tiling with fences. Discrete Appl Math 187,

82–90.
[4] Benjamin AT, Quinn JJ (2003) Proofs That Really Count: The Art of Combinatorial Proof, Mathematical

Association of America.

https://www.youtube.com/watch?v=EAz28aafQJs
https://www.youtube.com/watch?v=EAz28aafQJs
https://www.fq.math.ca/Papers1/46_47-1/Edwards11-08.pdf
https://www.fq.math.ca/Papers1/46_47-1/Edwards11-08.pdf
https:/doi.org/10.1016/j.dam.2015.02.004
https:/doi.org/10.1016/j.dam.2015.02.004

