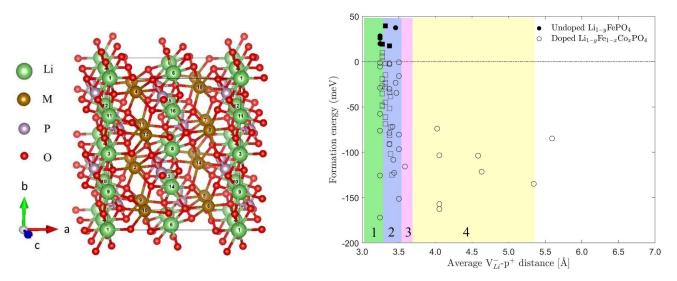
First Principles Study of Small Hole Polaron Formation in Doped Olivine LiFe_{1-x}Co_xPO₄: Effects of Li Deficiency


การศึกษาการเกิดโฮลโพลารอนขนาดเล็กในสารโอลิวีนที่ถูกเจือ (LiFe_{1-x}Co_xPO₄) โดยมีผลมาจากการดึงลิเซียมออกด้วยวิชีคำนวณแบบเฟิสต์พรินซิเพิล

Chanaprom Cholsuk, Sujin Suwanna, Kritsanu Tivakornsasithorn*

Materials Today Communications, Volume 26, March 2021, 102043.

https://doi.org/10.1016/j.mtcomm.2021.102043

Understanding the localization of small polarons (p+) are important for improvement of electronic conductivity in cathode materials such as LiFePO₄ and LiCoPO₄ for Li-ion battery technology. In this study we calculate the formation energy (ΔF) due to Li vacancies in LiFe₁. _xCo_xPO₄ by density functional theory with additional on-site Hubbard correction (DFT+U). We found that Li vacancies (V_{Li^-}) can induce polaron formation preferentially at Fe rather than Co sites. Co also improves polaron binding to V_{Li^-} to form a snall polaron complex ($V_{Li^-} - p$ +) and alters Li_{1-y}FePO₄ to the equilibrium phase ($\Delta F < 0$). Co doping can reduces the energy gap and increases the intercalation voltage. Overall, polaron localization plays key roles in electronic conductivity of LiFe_{1-x}Co_xPO₄ cathode materials.

Figure : (Left) Olivine-type LiMPO₄ (M=Fe, Co) structure and (Right) formation energy (ΔF) of a snall polaron complex ($V_{Li^-} - p^+$) in an equilibrium position as a function of distance between V_{Li^-} and p^+ where the circle and square symbols denote $y \le 0.50$ and y > 0.50 respectively. The shaded regions with the number represented for each nearest neighbor (NN). 1=1st NN, 2=2nd NN, 3=3rd NN and 4=4th NN.