

Suraphong Yuma (suraphong.yum@mahidol.ac.th)

Office: P619 (Payathai campus)

Kittiwit Matan (kittiwit.mat@mahidol.ac.th)

Office: P622 (Payathai campus)

Huygen's Principle หลักของฮอยเกนส์

- ทุกๆจุดบนหน้าคลื่นนั้น เปรียบเสมือนเป็น แหล่งกำเนิดคลื่นที่จะสร้างคลื่นวงกลมออกมารอบๆตัวมัน เรา เรียกว่า wavelets ซึ่งจะเคลื่อนที่ออกไปสู่ตัวกลางด้วยอัตราเร็วของคลื่นในตัวกลางนั้นๆ
 - · หลังจากผ่านไปอีกระยะหนึ่ง ตำแหน่งใหม่ของหน้าคลื่นก็คือ การเชื่อมต่อจุดผิวของ wavelets นั้น

Interference การแทรกสอด

- Principle of Superposition
 - · เมื่อคลื่นตั้งแต่ สองคลื่นขึ้นไปเคลื่อนที่มาทับซ้อนกัน ผลลัพธ์ของมันสามารถหาได้โดยการรวมคลื่นแต่ละอัน ณ จุดนั้น เข้าด้วยกัน
- · Coherent waves
 - · Two monochromatic waves of the same frequency.
- · Constructive interference: r_2 - r_1 = $m\lambda$
- · Destructive interference: $r_2 r_1 = \left(m + \frac{I}{2}\right)\lambda$

Waves interfere constructively if their path lengths differ by an integral number of wavelengths: $r_2 - r_1 = m\lambda$.

Waves interfere destructively if their path lengths differ by a half-integral number of wavelengths: $r_2 - r_1 = (m + \frac{1}{2})\lambda$.

Interference การแทรกสอด

· Antinodal curves $r_2 - r_1 = m\lambda$

Antinodal curves (red) mark positions where the waves from S_1 and S_2 interfere

การแทรกสอดของแสงจากสองแหล่งกำเนิด

(a) Interference of light waves passing through two slits

(b) Actual geometry (seen from the side)

In real situations, the distance R to the screen is usually very much greater than the distance d between the slits ...

(c) Approximate geometry

... so we can treat the rays as parallel, in which case the path-length difference is simply $r_2 - r_1 = d \sin \theta$.

Constructive waves:
$$r_2 - r_1 = d \sin \theta = m\lambda$$

Destructive waves: $r_2 - r_1 = d \sin \theta = \left(m + \frac{I}{2}\right) \lambda$

การแทรกสอดของแสงจากสองแหล่งกำเนิด

(a) Interference of light waves passing through two slits

(b) Actual geometry (seen from the side)

In real situations, the distance *R* to the screen is usually very much greater than the distance *d* between the slits ...

(c) Approximate geometry

... so we can treat the rays as parallel, in which case the path-length difference is simply $r_2 - r_1 = d \sin \theta$.

$$y_m = R \tan \theta_m$$

Intensity Distribution of the Double-slit Interference

$$E_1 = E_0 \sin \omega t$$

$$E_1 = E_0 \sin \omega t$$
 $E_2 = E_0 \sin (\omega t + \phi)$

- \cdot ความต่างเฟส ϕ ขึ้นอยู่กับ path difference $\delta = r_2 r_1$
- สำหรับกรณีของการแทรกสอดแบบเสริมกัน ความต่างเฟสจะเป็น 2π

$$\frac{\delta}{\lambda} = \frac{\phi}{2\pi} \longrightarrow$$

$$\frac{\delta}{\lambda} = \frac{\phi}{2\pi} \longrightarrow \left| \phi = \frac{2\pi}{\lambda} \delta = \frac{2\pi}{\lambda} d \sin \theta \right|$$

$$E_p = 2E_0 \cos\left(\frac{\phi}{2}\right) \sin\left(\omega t + \frac{\phi}{2}\right)$$

The intensity of a wave is proportional to the square of the resultant electric field magnitude at that point.

$$I = I_{max} \cos^2 \left(\frac{\pi d \sin \theta}{\lambda} \right)$$

Diffraction การเลี้ยวเบน

· Diffraction หรือ การเลี้ยวเบน เป็นปรากฏการณ์ที่เกิดขึ้นเมื่อ ความยาวคลื่นของแสงมีขนาดเท่ากับหรือใหญ่กว่ารูที่แสงนั้นจะเดินทางผ่าน

Diffraction Patterns from Narrow Slits

Fraunhofer diffraction pattern

· ถ้าเราแบ่ง slit เป็นสองส่วนเท่าๆกัน

$$\frac{a}{2}\sin\theta = \pm \frac{\lambda}{2}$$
 or $\sin\theta = \pm \frac{\lambda}{a}$

$$\sin \theta_{\text{dark}} = m \frac{\lambda}{a} \qquad m = \pm 1, \pm 2, \pm 3, \dots$$

$$m = \pm 1, \pm 2, \pm 3, \dots$$

Intensity of Single-Slit Diffraction Patterns

Phase Difference

$$\Delta \beta = \frac{2\pi}{\lambda} \Delta y \sin \theta$$

ที่มุมเล็กๆ θ, เราสามารถกำหนดได้ว่า สนาม ไฟฟ้า Δ E มีค่าเท่ากันทั้งหมด

$$\beta = N\Delta\beta = \frac{2\pi}{\lambda}N\Delta y\sin\theta = \frac{2\pi}{\lambda}a\sin\theta$$

$$E_0 = N\Delta E$$

$$\beta = 0$$

$$E_R$$
(a)

Intensity of Single-Slit Diffraction Patterns

Phase Difference

$$\Delta \beta = \frac{2\pi}{\lambda} \Delta y \sin \theta$$

ที่มุมเล็กๆ θ, เราสามารถกำหนดได้ว่า สนาม ไฟฟ้า Δ E มีค่าเท่ากันทั้งหมด

$$\beta = N\Delta\beta = \frac{2\pi}{\lambda}N\Delta y\sin\theta = \frac{2\pi}{\lambda}a\sin\theta$$

The first minimum occurs at

$$\sin \theta_{dark} = \frac{\lambda}{a}$$

Intensity of Single-Slit Diffraction Patterns

พิจารณากรณีที่ Δy มีค่าน้อยมากๆ เป็น dy และค่า N เข้าใกล้อนันต์ สนามไฟฟ้าทั้งหมด E_R จะสามารถหาได้ จากสูตร

$$\sin\frac{\beta}{2} = \frac{E_R/2}{R} \longrightarrow E_R = 2R\sin\frac{\beta}{2} = 2\left(\frac{E_0}{R}\right)\sin\frac{\beta}{2} = E_0\left[\frac{\sin(\beta/2)}{\beta/2}\right]$$

ความเข้มแสง | จะเป็น

Intensity of Two-Slit Diffraction Patterns

Diffraction การเลี้ยวเบน

Laser Diffraction and Interference

MIT Department of Physics Technical Services Group

The Diffraction Grating

(a) N = 2: two slits produce one minimum between adjacent maxima.

(c) N = 16: with 16 slits, the maxima are even taller and narrower, with more intervening minima.

(b) N = 8: eight slits produce taller, narrower maxima in the same locations, separated by seven minima.

แสงมีความเข้มสูงสุดที่

$$d \sin \theta = m\lambda$$

Grating Spectrograph

- กระบวนการที่ใช้ grating เลี้ยวเบนในการวัดสเปกตรัมของแสง (แยก แสงออกเป็นแต่ละช่วงความยาวคลื่น เราเรียกว่า "spectroscopy"
- · โดยที่ค่าความละเอียด หรือ Resolution ของ grating R คือ

$$R = \frac{\lambda}{\Delta \lambda}$$

• ตัวอย่าง:

- เมื่อเราให้ความร้อนแก่อะตอมของโซเดียม อะตอมจะเปล่งแสงออกมา
 ที่ความยาวคลื่นเท่ากับ 589.00 nm และ 589.59 nm
 - สเปกโตกราฟ (spectrograph) ที่สามารถจะแยกสเปกตรัมสอง
 เส้นนี้ออกจากกัน ต้องมี Resolution อย่างน้อยเท่าไร

$$R = \frac{\lambda}{\Delta \lambda} = 589.00/0.59 = 1000$$

X-ray Diffraction

- · ในปี 1895, Wilhelm Roentgen ค้นพบ รังสีเอกซ์ X-ray ที่มีความยาวคลื่นสั้นมากๆ ประมาณ 0.1nm.
 - · Cf. ระยะระหว่างอะตอมในผลึกมีค่าเท่ากับ 0.1nm
- ต่อมาในปี 1913, Max von Laue เสนอว่า ถ้าเราฉายแสงรังสีเอกซ์ ไปบนผลึก จะทำให้เรา สามารถมองเห็นโครงสร้างของผลึกได้ โดยตัวผลึกนั้นจะทำหน้าที่เหมือนเป็น grating สามมิติ

Bragg's law: $2d \sin \theta = m\lambda$

X-ray Diffraction

Figure 38.25 (a) A Laue pattern of a single crystal of the mineral beryl (beryllium aluminum silicate). Each dot represents a point of constructive interference. (b) A Laue pattern of the enzyme Rubisco, produced with a wide-band x-ray spectrum. This enzyme is present in plants and takes part in the process of photosynthesis. The Laue pattern is used to determine the crystal structure of Rubisco.

Polarization of Light

· Linearly polarized light แสงโพราไลซ์เชิงเส้น

- Unpolarized light with polarizing filter
 - โดยปกติแล้ว แสงจะไม่โพราไลซ์

Filter only partially absorbs vertically polarized component of light.

Polarization of Light

- · Malus's Law:
 - · แสงโพลาไรซ์หลังจากผ่านตัว Analyzer แล้ว ความเข้มแสงจะลดลงเป็น

$$I=I_{max}\cos^2\phi$$

Polarization by Reflection

- For most angle of incidence, waves for which the electric-field vector is perpendicular to the plane of incidence are reflected more strongly than those for which the electric field lies in the plane. -> Partially polarized light.
 - · At one particular angle of incidence, **polarizing angle**, the light for which the electric-field vector in the plane of incidence is not reflected at all.
 - · In 1812, Sir David Brewster discovered that when the angle of incidence is the polarizing angle, the reflected and refracted rays are perpendicular to each other.

$$\tan \theta_p = \frac{n_b}{n_a}$$