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Interference n1sunNINdDc

- Principle of Superposition
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- Coherent waves
- Two monochromatic waves of the same frequency.

. Constructive interference: 1,-r,=mA/

1

- Destructive interference:  r,-r,=|m+— |4
)?
Waves interfere constructively if their path Waves interfere destructively if their path
leneths differ bv an inteeral number of lengths differ by a half-integral number of
= © e 1
wavelengths: r, — r; = mA. wavelengths: r, —rp = (m +5)A.
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Interference NsLNINEDA

- Antinodal curves r,-r,=mA

Antinodal curves (red) mark positions where
the waves from S, and S, interfere

constructively.
}f‘ At a and b, the waves

arrive in phase and
interfere constructively.

At c, the waves arrive
one-half cycle out of phase
and interfere destructively.

m = the number of wavelengths A by which
the path lengths from §, and S, differ.
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(a) Interference of light waves passing through two slits
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(b) Actual geometry (seen from the side) (c) Approximate geometry
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To screen
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s ... SO we can treat the rays as
In real situations, the distance R to the parallel, in which case the path-length
screen is usually very much greater than difference is simply r, — r, = dsin .

the distance d between the slits ...

Constructive waves: r,-r;=d sin 0=mi

1

Destructive waves: r,-r;,=dsin 0= m+7 A
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(a) Interference of light waves passing through two slits
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(b) Actual geometry (seen from the side)
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In real situations, the distance R to the
screen is usually very much greater than
the distance d between the slits ...
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(c) Approximate geometry
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parallel, in which case the path-length
difference is simply r, — r; = dsin 6.
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Intensity Distribution of the Double-slit Interference
E,=E,sin (ot+¢)
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E,=2E,cos (%) SIn (a)t+ %)

- The intensity of a wave is proportional to the square

of the resultant electric field magnitude at that point.
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M. Cagnet, M. Francon, J.C. Thierr




Diffraction n1stagituu
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Diffraction Patterns from Narrow Slits

i . Fraunhofer diffraction pattern
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Intensity of Single-Slit Diffraction Patterns

Phase Difference
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Intensity of Single-Slit Diffraction Patterns

Phase Difference
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Intensity of Single-Slit Diffraction Patterns
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Intensity of Two-Slit Diffraction Patterns
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Laser Diffraction
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The Diffraction Grating

(a) N = 2: two slits produce one minimum
between adjacent maxima.

(b) N = 8: eight slits produce taller, narrower
maxima in the same locations, separated by
seven minima.
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(c) N = 16: with 16 slits, the maxima are even
taller and narrower, with more intervening
minima.
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Grating Spectrograph
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FOCAS spectral image using MOS and a grism
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X-ray Ditfraction
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Used with permissian of Fastman Kodak Company

X-ray Ditfraction
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(a) (b)
Figure 38.25 (a) A Laue pattern of a single crystal of the mineral beryl (beryllium alu-
minum silicate). Each dot represents a point of constructive interference. (b) A Laue
pattern of the enzyme Rubisco, produced with a wide-band x-ray spectrum. This
enzyme is present in plants and takes part in the process of photosynthesis. The Laue
pattern is used to determine the crystal structure of Rubisco.



Polarization of Light

Linearly polarized light uasnslagi@adu

Unpolarized light with polarizing filter
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Transmitted light, linearly
polarized parallel to
polarizing axis

Polarizer J

Incident / T

unpolarized
light

/" for all orientations of the polarizing filter.

/  For an ideal polarizing filter, the transmitted
intensity is half the incident intensity.

Polarizing \

axis

|» The intensity of the transmitted light is the same
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Filter only partially absorbs vertically
polarized Component of light.
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Filter almost completely  Transmitted light is
absorbs horizontally linearly polarized in
polarized component of  the vertical direction.
light.



Polarization of Light

¢ 1s the angle between the polarizing
axes of the polarizer and analyzer. Analyzer__i\

'/ .

Polarizer |

Incident
unpolarized |
light |

Photocell

| The intensity 7 of light from

/  the analyzer is maximal (/,,,)
when ¢ = 0. At other angles,

[=1

max

s
’,J‘l The linearly
| polarized light
from the first
polarizer can be
resolved into components £, and £ | parallel and perpendicular,
respectively, to the polarizing axis|of fhe analyzer.

cos? ¢

Malus’s Law:
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Polarization by Reflection

@ [f unpolarized light is incident
at the polarizing angle ...

@ ... then the reflected light is
100% polarized perpendicular
to the plane of incidence ...

Normal

!

Plane of |
incidence I

@ Alternatively, if
unpolarized light is incident
on the reflecting surface at
an angle other than 6, the
reflected light is partially
polarized.

n

a

Relleclne surface
n,

@ ... and the transmitted light
is partially polarized parallel
to the plane of incidence.

For most angle of incidence, waves for which the electric-field vector is perpendicular to the
plane of incidence are reflected more strongly than those for which the electric field lies in the
plane. -> Partially polarized light.

At one particular angle of incidence, polarizing angle , the light for which the electric-field
vector in the plane of incidence is not reflected at all.

In 1812, Sir David Brewster discovered that when the angle of incidence is the polarizing
angle, the reflected and refracted rays are perpendicular to each other.
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