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3.1 Schrödinger Equation

We will now discuss Postulate IV. Suppose that we have already solved the eigenvalue problem and obtained
eigenvalues E and the corresponding eigenvectors |E〉, that is,

H |E〉 = E |E〉

Having solved the eigenvalue program, we can next solve the Schrödinger equation, which according to
Postulate IV states that

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 .

In order to solve the Schrödinger Equation we first have to expand the wave function ψ(t) in terms of
eigenvectors of the Hamiltonian H:

|ψ(t)〉 =
∑
E

|E〉 〈E|ψ(t)〉 =
∑
i

aE(t) |E〉 ,

where aE(t) = 〈E|ψ(t)〉. Therefore, we can rewrite the Schrödinger equation as

i~
d

dt

∑
E

aE(t) |E〉 = H
∑
E

aE(t) |E〉

=
∑
E

aE(t)H |E〉

=
∑
E

aE(t)E |E〉

⇒
∑
E

[
i~
d [aE(t)]

dt
− aE(t)E

]
|E〉 = 0

⇒ i~
d [aE(t)]

dt
= aE(t)E

This differential equation can be easily solved. The solution for aE(t) is:

aE(t) = aE(0)e−iEt/~,

where aE(0) indicates the initial condition of the wave function, which can be calculated from

aE(0) = 〈E|ψ(t = 0)〉 .
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Since |ψ(t = 0)〉 is given in a problem, aE(0) can be readily calculated. It basically indicates the overlap
between the initial wave function and each eigenvector |E〉. Therefore, we have

|ψ(t)〉 =
∑
E

aE(t) |E〉 =
∑

aE(0)e−iEt/~ |E〉 =
∑
E

〈E|ψ(t = 0)〉 e−iEt/~ |E〉 .

That is, if we know |ψ(t = 0)〉 and are able to solve the eigenvalue problem of the Hamiltonian H, then the
state at time t can be determined. This way, the quantum mechanics theory is deterministic. We can rewrite
|ψ(t)〉 as

|ψ(t)〉 =
∑
E

e−iEt/~ |E〉 〈E|ψ(t = 0)〉 = U(t) |ψ(t = 0)〉 ,

where
U(t) =

∑
E

|E〉 〈E| e−iEt/~. (3.1)

We call U(t) a time propagator. You can prove for yourselves that U(t) is a unitary operator. If the
eigenstates are degenerate, then the equation above becomes

U(t) =
∑
α

∑
E

|E,α〉 〈E,α| e−iEt/~,

where α indexes the degenerate states that have the same eigenvalue E. And if the E or α is continuous,
the sum becomes an integral. Alternatively, we can write U(t) as

U(t) = e−iHt/~,

where H is the Hamiltonian. Since H is Hermitian, you can show that U(t) is unitary. We can then expand
U(t) in terms of the eigenstate of H and obtain Eq. ??. You can also prove that

|ψ(t)〉 = e
−iHt/~

|ψ(0)〉

satisfies the Schrödinger equation. Since U(t) is a unitary operator, we can think of the time revolution of
|ψ(t)〉 as a rotation of the vector |ψ(t)〉 in the Hilbert space. Therefore, the inner product 〈ψ(t)〉 |ψ(t) is
invariant with time, that is,

〈ψ(t)〉 |ψ(t) = 〈ψ(0)〉 |U†(t)U(t)ψ(0) = 〈ψ(0)〉 |ψ(0).

As you can see, the propagator U(t) indicates the time evolution of |ψ(t)〉 from time t = 0 to time t. In
general, we an define U(t2, t1) to indicate the time evolution of the state from time t1 to t2, and we have

U(tn, t1) = U(tn, tn−1)U(tn−1, tn−2) . . . U(t2, t1).

The fact that we can divide U(t) into an arbitrary small step is very useful in solving the time-dependent
Schroödinger equation. However, that topic is beyond the scope of our class. In this class, we will only
consider the time-independent Hamiltonian, that is, the Hamiltonian is not explicitly dependent on a variable
t.

If ψ(0) is equal to one of the eigenstate, we will have

|E(t)〉 = |E〉 e−iEt/~.

Since we can see that the norm 〈E(t)〉 |E(t) is invariant, we call this state stationary state. Therefore, the
probability of finding the state in the state |E(t)〉 does not change with time, that is, if initially the state is
in the eigenstate, then it will always be in the same eigenstate.
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We can also find the expectation value of the measurable quantity associated with an operator Ω as a function
of time by

〈ψ(t)|Ω|ψ(t)〉 = 〈ψ(0)|U†(t)ΩU(t)|ψ(0)〉 .
As we discussed before in the section about the unitary operator. We can look at this expression from two
different point of view. First, we can think of the state |ψ(0)〉 is rotated or “time-evoluted” by the propagator
U(t) and 〈ψ(0)| by the propagator U†. This picture is called the active transformation as we have discussed
or the Schrödinger picture. Alternatively, we can think of the state being fixed at |ψ(0)〉 and the operator Ω
undergoes the time evolution through

Ω→ U†(t)ΩU(t).

This picture is called the passive transformation or the Heisenberg picture. However, no matter how you we
at the time evolution of the state or the operator, at the end the expectation value are the same. Therefore,
your description or your interpretation of quantum mechanics does not affect the outcome of the calculations,
which are the most important here.

As an example, we will consider one of the exactly solvable problems in quantum mechanics, which is simple
harmonic oscillators (SHO). I will assumer that you have already learned how to solve this problem using
the differential equation method. Alternatively, in this class I will look at how to solve this problem using
the operator method.

3.2 Propagator (time-evolution operator)

We learned from the previous section that if a state at time t0 is |ψ(t0)〉, the state at time t, |ψ(t)〉, is related
to |ψ(t0)〉 through the time-evolution operator or propagator U(t; t0), which is a unitary operator:

|ψ(t)〉 = U(t; t0) |ψ(t0)〉

where for the time-independent Hamiltonian, we have

U(t; t0) = e−
i
~H(t−t0).

We will next discuss the properties of the propagator.

Properties of U(t; t0)

1. U(t; t0) is unitary and hence presevers probability and norm.

U†(t; t0)U(t; t0) = 1

⇒ 〈ψ(t)|ψ(t)〉 = 〈ψ, t0|U†(t; t0)U(t; t0)|ψ, t0〉
= 〈ψ, t0|ψ, t0〉 ,

i.e. if |ψ(t0)〉 is normalized, |ψ(t)〉 stays normalized. However, we note that each component of |ψ(t)〉
written in a basis can vary differently with time t, giving rise to the interference.

2. Composition Rule:
U(t; t1)U(t1; t0) = U(t; t0)

When it acts on |ψ, t0〉,

|ψ(t)〉 = U(t; t1) |ψ(t1)〉 = U(t; t1)U(t1; t0) |ψ(t0)〉 = U(t; t0) |ψ(t0)〉 .

In general, we can divide a time interval between t0 and tN into N small intervals, and

U(tN ; t0) = U(tN ; tN−1)U(tN−1; tN−2) · · ·U(t2; t1)U(t1; t0).
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3. U(t; t0) becomes identity at t = t0, that is,

lim
t→t0

U(t, ; t0) = 1.

All of the above properties can be satisfied if U(t; t0) has the following infinitesimal form

U(t0 + dt; t0) = 1− i

~
H(t0)dt+O

(
dt2
)

Written in this form, H(t0) can be thought of as the generator of time-evolution similar to the momentum
operator P , which is the generator of translation.

Schrödinger equation for U(t; t0)

i~
d

dt
U(t; t0) = H(t)U(t; t0) (3.2)

We can use this equation to obtain the Schrödinger equation for |ψ(t)〉:

i~
d

dt
|ψ(t)〉 = i~

∂

∂t
U(t; t0) |ψ(t0)〉

= H(t)U(t; t0) |ψ(t0)〉

⇒ i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉

Our goal here is to solve Eq. ?? for U(t; t0). We can classify the solution into the following categories:

Case 1: Time-independent Hamiltonian where H(t) = H(t0) = H. We can divide time between t0 and
t into N equal intervals. Each interval is (t− t0)/N . We then take a limit where N →∞.

U(t; t0) = lim
N→∞

(
1− i

~
H

(
t− t0
N

))N
= e−

i
~H(t−t0).

Case 2: Time-dependent Hamiltonian with [H(t), H(t′)] = 0 for all time t and t′, that is, the Hamil-
tonian remains compatible at all time. One example of this type of Hamiltonian is a spin in
a magnetic field, which is constant in direction but varies in strength. The propagator in this
case can be written as:

U(t; t0) = e
− i

~
∫ t
t0
dt′ H(t′)

.

We can verify that this expression for U(t; t0) satisfies Eq. ??:

i~
∂

∂t
U(t; t0) =

∂

∂t

[∫ t

t0

dt′ H(t′)

]
U(t; t0)

= H(t)U(t; t0)

Case 3: Time-dependent Hamiltonian with [H(t), H(t′)] 6= 0. One example of this type of Hamiltonian
is a spin in a magnetic field that is constantly changing its direction. Since, H(t) and H(t′)
are not compatible, we have to be careful with the order of the operators. From Eq. ??, we
can integrate both sides and obtain∫ t

t0

dt′
∂

∂t′
U(t′; t0) = − i

~

∫ t

t0

dt′ H(t′U(t′; t0))

Since we have U(t; t0) on both sides of this equation, we cannot really solve for U(t; t0).
However, we can approximate U(t; t0) using an iterative method:



Lecture 3: Review of Schrödinger Equation 3-5

• 0th order: U(t; t0) = 1.

• 1st order: U(t; t0) = 1− i

~

∫ t

t0

dt′ H(t′).

• 2nd order: U(t; t0) = 1− i

~

∫ t

t0

dt′ H(t′) +

(
−i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 H(t1)H(t2).

• 3rd order: U(t; t0) = 1− i

~

∫ t

t0

dt′ H(t′) +

(
−i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 H(t1)H(t2)

+

(
−i
~

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 H(t1)H(t2)H(t3).

...

• all orders: U(t; t0) = 1 +

∞∑
n=1

(
−i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn H(t1)H(t2) · · ·H(tn)

or we can rewrite it using the time ordering operator T in decreasing order of t,

U(t; t0) =

∞∑
n=0

1

n!

(
−i
~

)n
T
[∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtn H(t1)H(t2) · · ·H(tn)

]
.

This expression is known as the Dyson series. Note that when using the time ordering
operator, all upper limits in the integrals become t. This expression for U(t; t0)can also
be written as

U(t; t0) = T
[
e
− i

~
∫ t
t0
dt′ H(t′)

]
For the majority of this class, we will only deal with Case 1. We will touch on Case 2 and probably Case
3 when we discuss time-dependent perturbation theory. Therefore, as of now, do not worry if you do not
really know how to do calculations using these expressions for U(t; t0).

Propagator in the x-basis

We can write the propagator in the x−basis, which can be useful when we perform actual calculations.
Basically, we want to write down the matrix element of U(t; t0) in the x−basis, which we will call U(x, t;x′, t0).

U(x, t;x′, t0) ≡ 〈x|U(t; t0)|x′〉
=

∑
n′

e−
i
~En′ (t−t0) 〈x|n′〉 〈n′|x′〉

=
∑
n′

e−
i
~En′ (t−t0)φ∗n′(x)φn′(x

′).

For a continuous case, we can replace the sum by an integral. For example, in the case of a free particle, the
propagator in the x−basis is given by

U(x, t;x′, t0) ≡ 〈x|U(t; t0)|x′〉

=

∫ ∞
−∞

dp e−
i
~Ep(t−t0) 〈x|p〉 〈p|x′〉

=

∫ ∞
−∞

dp e−
i
~Ep(t−t0)ψ∗p(x)ψp(x

′),
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where Ep =
p2

2m
and ψp(x) =

1√
2π~

eipx/~ is the eigenstate of the momentum operator in the x−basis. Once,

we obtain U(x, t;x′, t0), the wavefunction at time t can be calculated by

ψ(x, t) = 〈x|ψ(t)〉 = 〈x|U(t; t0 = 0)|ψ(0)〉

=

∫ ∞
−∞

dx′ 〈x|U(t; t0 = 0)|x′〉 〈x′|ψ(0)〉

=

∫ ∞
−∞

dx′ U(x, t;x′, 0)ψ(x′, 0)

If we know U(x, t;x′, 0) and the initial wavefunction ψ(x, 0), then we can caluclated ψ(x, t). The difficulty
here is to find U(x, t;x′, 0), which for most systems is difficult to obtain.

Examples of Propagators

There are only few systems where we can write a propagator in an exact analytical form. Here, we will

consider only two such systems. The first system is a system of free particle where H =
P 2

2m
, and the other

is the simple harmonic oscillator that we just discussed in the previous lecture. For the free particle, the
propagator is given by

U(x, t;x′, 0) ≡ 〈x|U(t)|x′〉 =

√
m

2π~it
eim(x−x′)

2
/2~t.

I will let prove this expression in the homework. For the simple harmonic oscillator with

H =
P 2

2m
+
mω2X2

2

the propagator is given by

U(x, t;x′, 0) ≡ 〈x|U(t)|x′〉 =

√
mω

2πi~ sin (ωt)
exp

{
imω

2~ sin (ωt)

[(
x2 + x′2

)
cos (ωt)− 2xx′

]}
.

I took this expression from a paper by Barone et al. (Am. J. Phys. 71 (5), 483 (2003)) I will not try to
prove it in this class but instead will give you the paper of Barone et al. to read (for fun!). All I need you
to take away from this paper is to realize that the exact form of the propagator for the simple harmonic
oscillator can be calculated.

Time-evolution of an arbitrary state

Now, we will consider the time-evolution of an arbitrary state |α, t0〉. At the initial time t0 = 0, we can write
this state in terms of the eigenstates |n〉 as

|α, t0 = 0〉 =
∑
n

|n〉 〈n|α, 0〉 ≡
∑
n

cn(0) |n〉 ,

where cn(0) ≡ 〈n|α, 0〉 is a component of the initial state along the eigenstate |n〉. Next, let us consider the
time evolution of |α, 0〉. This is easy, since we know how the eigenstate, each component, evolves with time:

|α(t)〉 = U(t; 0) |α, 0〉 =
∑
n,n′

cn(0)e−
i
~En′ t |n′〉 〈n′|n〉 =

∑
n

cn(0)e−
i
~Ent |n〉 ≡

∑
n

cn(t) |n〉 ,
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where cn(t) ≡ e−
i
~Entcn(0) is the time-evolution of each coefficient of the eigenstate |n〉. We note that this

phase change of each component of |n〉 depends on the eigenvalue En, which is normally different. Therefore,
the relative phases of |α(t)〉 changes with time, and hence |α(t)〉 is different from the initial state |α, t0〉.

It is useful to find a complete set of commuting observables so that

[A1, H] = [A2, H] = · · · = [An, H] = 0

and
[A1, A2] = [A2, A3] = · · · = [An−1, An] = 0.

Therefore, we can find the orthonormal basis |a1, a2, · · · , an〉 uniquely, and write U(t; t0) using this basis.

Expectation of observable as a function of t

Consider an observable A, which does not need to commute with H. We will calculate the expectation of A
with respect to a time-evolving state |n(t)〉, where |n〉 is the eigenstate of H with the associated eigen-energy
En.

〈A〉t = 〈n(t) |A |n(t)〉 =
〈
n
∣∣U†(t; 0)AU(t, 0)

∣∣n〉 =
〈
n
∣∣∣ e−iEnt/~AeiEnt/~

∣∣∣n〉 = 〈n|A|n〉 = 〈A〉t=0 .

Therefore, the expectation for the stationary state is time-independent.

Now, let us consider the expectation for an arbitrary state |α(t)〉. The initial state is

|α(0)〉 =
∑
n

cn |n〉 ,

where cn = 〈n|α〉 and |n〉 is the eigenstate of H. The expectation of A with respect to the state |α(t)〉 is:

〈A〉t =

[∑
n′

c∗n′ 〈n′| eiEn′ t/~

]
A

[∑
n′′

cn′′e
−iEnt/~ |n′′〉

]
=
∑
n′,n′′

c∗n′cc′′ 〈n′|A|n′′〉 e−i(En′′−En′ )t/~.

The expectation of A with respect to an arbitrary state is time-dependent due to the oscillating terms with

frequency ω =
En′′ − En′

~

3.3 Schrödinger and Heisenberg Interaction Pictures

There are two interpretations how we can view the time evolution in quantum mechanics; one interpretation
is called the Schrödinger picture and other called the Heisenberg picture.

Schrödinger picture

• |α(t)〉 ∈ H evolves with time.

• Operators are fixed.

Heisenberg picture

• |α〉 ∈ H is fixed.
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• Operators evolves with time.

In order to understand these two pictures better, we will consider the expectation of an operator A with
respect to an arbitrary state |α(t)〉.

〈A〉t = 〈α(t) |A |α(t)〉 =
〈
α(0)

∣∣U†(t; 0)AU(t; 0)
∣∣α(0)

〉
This expectation value must remain the same in both pictures. We can view it using either Schrödinger or
Heisenberg picture.

Picture “ket” “bra” Operator
Schroödinger |α(t)〉S = U(t; 0) |α(0)〉 〈α(t)|S = 〈α(0)|U†(t; 0) AS = A
Heisenberg |α〉H = |α(0)〉 〈α|H = 〈α(0)| AH(t) = U†(t; 0)AU(t; 0)

Therefore, we can rewrite the expectation as

〈A〉t = 〈α(t) |AS |α(t)〉S S = 〈α |AH(t) |α〉H H

Note that in the Schrödinger picture, the parameter t is with the state, while in the Heisenberg picture, t is
a parameter for the operator. We can see that at t = 0,

|α, 0〉S = |α〉H and AS = AH(0),

at some later time t,

|α(t)〉S = U(t; 0) |α〉H and AH(t) = U†(t; 0)ASU(t; 0).

If the Hamiltonian is time-independent, then we can write

|α(t)〉S = e−
i
~Ht |α〉H

and
AH(t) = e

i
~HtASe

− i
~Ht.

We note that in Heisenberg picture, since operators change with time, the eigenstates and hence a basis also
change with time. So, we can ask how the basis changes in the Heisenberg picture. Let us suppose that in
the Schrödinger picture, we can solve the following eigenvalue problem

AS |a〉 = a |a〉

for a and |a〉. In the Heisenberg picture, the operator becomes

AH(t) = U†(t; 0)AU(t; 0).

So what are the eigenvalues and eigenstates for AH(t)? Consider

AH(t)
(
U† |a〉

)
=
(
U†ASU

) (
U† |a〉

)
= U†AS |a〉 = U†a |a〉 = a

(
U† |a〉

)
.

Therefore, a is an eigenvalues and U† |a〉 is an eigenstate of AH(t). As a result, U† |a〉 form a basis in the
Heisenberg picture. The new basis in the Heisenberg picture is

|a(t)〉H = U† |a〉 ,

which means that the eigenstate or the basis in the Heisenberg picture “rotates” in an opposite sense from
the rotation of state in the Schrödinger picture.



Lecture 3: Review of Schrödinger Equation 3-9

Transition Amplitude

We can look at the transition amplitude using either Schrödinger or Heisenberg picture. Suppose that at
t = 0 a system is in an eigenstate |a〉 of A. Then at a later time t, B is measured and we want to know the
probability that the system is in a state |b〉, which is an eigenstate of B. The transition amplitude in this
case is equal to 〈b|U |a〉. In the Schrödinger picture, |a〉 evolves to U(t; 0) |a〉 while B is fixed and hence the
eigenstate |b〉 of B remains fixed. On the other hand, in the Heisenberg picture, |a〉 is fixed while B evolves
with time and hence the eigenstate |b〉, which also acts as a basis, changes with time according to U† |b〉 for
a “ket” or 〈b|U for a “bra”. We note that the probability P is hence equal to

P = |〈b|U |a〉|2 ,

in both Schrödinger and Heisenberg pictures.

3.3.1 Heisenberg Equation of Motion

If we want to make an analogy between classical and quantum mechanics, the Heisenberg interpretation
provides a clearer picture. In classical physics, observables such as x and p evolves with time. Therefore,
in quantum mechanics, one would expect observables X and P to evolve with time, which is what the
Heisenberg picture provides, in order to be consistent with the classical mechanics. So, let us consider a
time-derivative of an operator AH(t) in the Heisenberg picture.

dAH(t)

dt
=

d

dt

(
U†ASU

)
=
∂U†

∂t
ASU + U†AS

∂U

∂t
+ U†

∂AS
∂t

U,

but from the Schrödinger equation we have

∂U

∂t
=

1

i~
HU and

∂U†

∂t
= − 1

i~
U†H.

Therefore, we can rewrite
dAH(t)

dt
as

dAH(t)

dt
= − 1

i~
U†HASU +

1

i~
U†ASHU + U†

∂AS
∂t

U

= − 1

i~
U†H

(
UU†

)
ASU +

1

i~
U†AS

(
UU†

)
HU +

∂
(
U†ASU

)
∂t

= − 1

i~
(
U†HU

) (
U†ASU

)
+

1

i~
(
U†ASU

) (
U†HU

)
+
∂AH
∂t

= − 1

i~
HAH +

1

i~
AHH + ȦH ,

where
(
U†HU

)
= H,

(
U†ASU

)
= AH , and ∂AH

∂t = ȦH .

⇒ dAH(t)

dt
=

1

i~
(AHH −HAH) + ȦH =

1

i~
[AH , H] + ȦH .

Therefore, the Heisenberg equation of motion is

dAH(t)

dt
=

1

i~
[AH(t), H] + ȦH
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This equation is related to the Poisson bracket in classical mechanics, where

dA

dt
= {A,H} ,

where A is an observable and H is a Hamiltonian in classical mechanics.

3.3.2 Time-energy uncertainty relation

Unlike observables X and P , t is not an operator in quantum mechanics. Hence, there is no direct analogue
of the uncertainty relation of ∆X∆P for time and energy. However, we know that a state, which is not an
eigenstate evolve or change with time. So, a question we can ask ourselves is that: How rapidly does wave
function change its form with t? Let us define

c(t) = 〈α|U(t; 0)|α〉 ,

which is the overlap of the initial state |α〉 and the final state U |α〉, to be the change of state at time t
with respect to the state at t = 0. It is obvious that if |α〉 is an eigenstate of H (a stationary state), then
|c(t)|2 = 1 for all time. However, in general for an arbitrary state, we have

|α〉 =
∑
n

cn |n〉 ,

where |n〉 is an eigenstate of H, and

|α(t)〉 = U(t; 0) |α〉 =
∑
n

cne
− i

~Ent |n〉 .

Due to the oscillation and interference of the phase terms, the overlap decreases from 1, if |α〉 is not an
eigenstate of H. We note that for states whose energies are close together, it takes a long time for the states
to spread out. On the other hand, if the states are far away from one another in terms of eigenenergies,
then it does not take very long for them to spread out. Therefore, in this sense, a small uncertainty in
energy gives rise to a large uncertainty in time and vice versa. We will derive this statement mathematically.
Suppose that we measure an observable A with [A,H] 6= 0. We can then calculate a time derivative of the

expectation value of A

(
d 〈A〉
dt

)
,

d 〈A〉
dt
∼ ∆A

∆t
⇒ ∆t ∼ ∆A

d〈A〉
dt

.

But from the Heisenberg equation of motion, we know that

d 〈A〉
dt

=
1

i~
〈[A,H]〉 .

From the Schmidt inequality, we have

〈∆A〉2 〈∆H〉2 ≥ 1

4
|〈[A,H]〉|2 =

~2

4

∣∣∣∣d 〈A〉dt

∣∣∣∣2

⇒

 〈∆A〉2∣∣∣d〈A〉dt

∣∣∣2
 〈∆H〉2 ≥ ~2

4

⇒ 〈∆t〉2 〈∆H〉2 ≥ ~2

4
.
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But we know that

√
〈∆H〉2 = ∆E and

√
〈∆t〉2 = ∆t. Therefore, the time-energy uncertainty relation is

equal to

∆E ·∆t ≥ ~
2
.

In other words, if a system has a small energy width (states are all close together), the shape of the wave-
function change slowly.


