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In this lecture, we will formulate angular momentum operators in quantum mechanics. One of the conven-
tional method that you probably have learned in Quantum Mechanics I is to start from the definition of
the angular momentum in classical mechanics, which is ~L = ~r × ~P , and then write the angular momentum
operators L̂ in term of the X̂ and P̂ operators. However, in this lecture, we will try to formulate L̂ by relying
on a rotation operator and define L̂ as a generator of the rotation. Therefore, we will start the discus-
sion of the angular momentum operators in quantum mechanics by pointing out similarities and differences
between two rotation groups SO(3) and SU(2). The former is used to describe the rotation of vectors in
classical three-dimensional space, whereas the latter defines the rotation of states and operators in quantum
mechanics.

6.1 Rotation groups

We begin by stating the definition of a group.

Definition 6.1 A group G has the following properties:

G1: If g and h are in G then g · h is also in G. (closed)

G2: There exists an identity 1 such that 1 · g = g · 1 = g. (identity)

G3: There exists g−1 such that g−1g = g−1 = 1. (inverse)

G4: f · (g · h) = (f · g) · h. (associative)

So, from this definition, we can see that rotations form a group. And, what is the rotation group? One of
the natural candidates is the rotation group in R3, which is called a special orthogonal group of R3 or SO(3).
The properties of SO(3) are:

1. Its presentation is real 3× 3 special orthogonal matrices.

2. It preserves the inner product, that is, RTR = 1. This property is denoted by “O” for orthogonal in
SO(3).

3. It preserves the orientation, that is, detR = 1. This property is denoted by “S” for special in SO(3).

Examples of the matrix representations of the rotation in R3 are

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,
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which represents the rotation around the x−axis,

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,
which represents the rotation around the z−axis, and

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,
which represents the rotation around the y−axis.

We note that we can get to any n̂ vector in R3 by only two rotations. For example, to obtain a unit vector
n̂, which makes an angle φ with the z−axis and whose projection on the xy−plane makes an angle θ with
the x-faxis, first we need to rotate around the y−axis by φ and then rotate around the z−axis by θ.

The rotations around different axes do not commute. For example,

Rx(θ)Rz(θ) 6= Rz(θ)Rx(θ).

In other words, the rotation group forms a non-abelian group. We will see later that this property is
equivalent to the fact that the commutation of two different rotation operators in quantum mechanics is
non-zero.

In order to examine the non-commutative nature of rotations, let us consider an infinitesimal rotation, where
the angle of rotation ε is very small. In this case, the rotations around the x−, y− and z− axes become

Rx(θ) =

1 0 0

0 1− ε2

2 −ε
0 ε 1− ε2

2

 ,
Rz(θ) =

1− ε2

2 −ε 0

ε 1− ε2

2 0
0 0 1

 ,
Ry(θ) =

1− ε2

1 0 ε
0 1 0

−ε 0 1− ε2

2

 .
Note that we only keep up to terms with order ε2. Consider the difference between Rx(ε)Ry(ε) andRy(ε)Rx(ε)

Rx(ε)Ry(ε)−Ry(ε)Rx(ε) =

 0 −ε2 0
ε2 0 0
0 0 0

 = Rz(ε
2)− 1 = Rz(ε

2)−Ri(0),

where Ri(0) denotes any of the rotation matrices.

6.2 Rotations in quantum mechanics

Having considered the rotations in R3, next we will describe rotations in quantum mechanics. So, we want to
create an operator D(R) in quantum mechanics to associate with a rotation operator R in classical mechanics.
An action of D(R) is to rotate a state, that is,

|α〉R = D(R) |α〉 .
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The matrix representation of D(R) depends on the dimensionality N of the Hilbert space that |α〉 belongs
to.

For N = 2, the rotation group is SU(2), a special unitary group, whose elements are complex numbers.
It preserves norm and orientation, that is, U†U = 1 and detU = 1, respectively. To construct D(R), we
consider the infinitesimal transformation Uε, where

Uε = 1− iGε,

where G is a generator of the transformation. For rotation, we have

G→ Jn̂
~
, ε→ dφ.

where Jn̂ = ~J · n̂ is the generator of rotation around a unit vector n̂. Jn̂ is in fact the angular momentum
operator. Therefore, the rotation operator for an infinitesimal case becomes

D(n̂, dφ) = 1− i

(
~J · n̂
~

)
dφ,

and for a finite rotation, we have

D(n̂, φ) = lim
N→∞

[
1− i

(
~J · n̂
~

)
φ

N

]N
= e−i

~Jn̂φ/~.

We note that ~J is defined as the generator of rotation and we make no reference to angular momentum in
classical mechanics, which is defined as ~L = ~r× ~p. Therefore, this derivation can be applied to both angular
momentum operators and spin operators, which have no classical counterpart.

It turns out that R and D(R) have the same group properties, but their representations are different. As we
have seen, the representation of R in SO(3) is a real 3× 3 matrix, but the representation of D(R) for N = 2
in SU(2) is a complex 2× 2 matrix.

From the mapping R→ D(R), the infinitesimal rotation in quantum mechanics must satisfy

D(Rx, ε)D(Ry, ε)−D(Ry, ε)D(Rx, ε) = D(Rz, ε
2)−D(Ri, 0),

which can be written as

⇒
(

1− iJxε

~
− J2

xε
2

2~2

)(
1− iJyε

~
−
J2
y ε

2

2~2

)
−

(
1− iJyε

~
−
J2
y ε

2

2~2

)(
1− iJxε

~
− J2

xε
2

2~2

)
= 1− iJzε

2

~
− 1.

We keep only the ε2 term

⇒ − (JxJy − JyJx)
ε2

~2
=
−iJzε2

~
⇒ [Jx, Jy] = i~Jz.

In general,

[Ji, Jj ] = i~εijkJk
We note that the derivation is based on

1. Jn̂ is the generator of rotation.

2. Rotations form a non-abelian group, which implies that the rotations around different axes do not
commute, which is different from the momentum operator where Pi commutes with one another for
different i = x, y, and z.
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Figure 6.1: Topology of the rotation group SU(2).

6.3 SO(3) vs. SU(2)

We have seen that the rotation group representation for spin-1/2 and for three dimensional space are different.
The rotation group for spin-1/2 is SU(2) whereas that for three dimensional space is SO(3). One question
we can ask is whether or not SU(2) and SO(3) (we note that both groups are the rotation groups) are the
same. In order to answer this question, let us consider the rotation by 2π in SU(2) and SO(3). In SO(3)
a vector is back to the original state after 2π rotation. However, in SU(2) a vector acquires a non-trivial
phase of −1 under 2π rotation. In particular, the rotation operator of spin-1/2 system is given by

U(θn̂) = e−i
~S·n̂θ/~ = e−i~σ·n̂θ/2 = cos

θ

2
− i~σ · n̂ sin

θ

2
,

and if θ = 2π, then
U(2π) = −1.

On the other hand, for SO(3), U(2π) = 1. Therefore, 2π rotations in SU(2) and SO(3) are different. To
illustrate this difference, let us consider a topology of the rotation in SO(3) as a solid sphere in R3 of radius
π, and hence the rotation can be represented by a vector where

1. a unit vector n̂ from the center of the sphere represents a direction of the rotation axis.

2. an angle θ is an amount of the rotation around that axis.

The picture of 2π rotation around n̂ is shown in the top left figure, represented by a line segment AA′ going
through the origin. This path is not contractible back to a sphere, and hence is not topologically the same as
the case where there is no rotation, which is represented by a sphere without a line. Therefore, topologically,
the rotation by 2π is not the same as no rotation. However, if we do the rotation by another 2π represented
by a line segment BB′ as shown by the top right figure. Now we have two paths that are contractible to
a point. By requiring that A and A′ are on the opposite side (so are B and B′), we can move points A
and B′ together and A′ and B together. Since both of these lines are contractible to a point, topologically
this representation of 4π rotation is the same as no rotation. Therefore, 4π rotation gives back the origin.
Therefore, SO(3) is not large enough to describe rotation of half-odd integer spin, e.g spin-1/2. We need a
larger group, which is SU(2).
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Suppose that U is in SU(2) (special unitary group), then U†U = 1 and detU = 1, and we must have

U =

(
a b
−b∗ a∗

)
,

where a, b ∈ C and |a|2 + |b|2 = 1, which is an equation for a unit circle. We can show that when written in
this form, U satisfies

U†U =

(
a∗ −b
b∗ a

)(
a b
−b∗ a∗

)
=

(
|a|2 + |b|2 0

0 |a|2 + |b|2
)

=

(
1 0
0 1

)
The topology of SU(2) is S3, which is a sphere in R3, which is in contrast to a solid sphere for SO(3).
Elements of SU(2) group only live on the surface of the sphere and all loops on surface of S3 are contractible
unlike those in SO(3).

We can create a surjective (one-to-one) map from SU(2) to SO(3) using group homomorphism. We note
that SU(2) is larger than SO(3). Given U ∈ SU(2), there is R(U) ∈ SO(3) such as

R(U(a, b)) =

 <(a2 − b2) =(a2 + b2) −2<(ab)
−=(a2 − b2) <(a2 + b2) 2=(ab)

2<(ab̄) 2=(ab̄) |a|2 − |b|2

 ,

where <(x) and =(x) denote the real and imaginary part of x ∈ C, respectively.

Using this mapping, we can verify that

Rx(θ) = R

(
U

(
cos

θ

2
,−i sin

θ

2

))
=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Ry(θ) = R

(
U

(
cos

θ

2
,− sin

θ

2

))
=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rz(θ) = R

(
U
(
e−iθ/2, 0

))
=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

In particular, if θ = 0 and 2π, then we have

Ri(0) = R(U(1, 0)) =

1 0 0
0 1 0
0 0 1


Ri(2π) = R(U(−1, 0)) =

1 0 0
0 1 0
0 0 1

 ,

where i can be x, y, or z. That is, the two different elements in SU(2) representing the zero and 2π rotations
are mapped to the same group element in SO(3). In general,

R(U(a, b)) = R(U(−a,−b)),

which implies that

SO(3) = SU(2)/Z2.
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6.4 Realization of 4π rotation of spin−1/2

We have discussed the difference between SU(2) and SO(3) and found that the 2π rotation in SU(2) and
SO(3) gives rise to a different final state. At this point, you might be wondering whether or not we can
physically observe this difference between 2π and 4π rotations in a spin−1/2 system. We learn that 2π
rotation of a spin−1/2 particle will introduce a phase factor of −1 to a state. The question is whether or
not we can observe this phase change experimentally. Two experiments independently conducted in 1975 by
Werner et al. [3] and Rauch et al. [4] were able to show that 4π (not 2π) rotations of the spin-1/2 particle
using neutron interferometry preserve the original state.

A nearly monoenergetic thermal neutron beam is split into two paths A and B as shown in the figure. In
Path B, the beam is directed through a region with non-zero magnetic field, where the Hamiltonian can be
described by

H = −~µN · ~B = −gNe~
2mpc

~σ · ~B.

Hence, the beam in Path B will pick up an extra phase proportional to eiHt/~ = e∓iωt/2, where it is assumed

that ~B is along the z−axis and ω =
gNeB

mpc
. t is a time spent in a region with non-zero ~B−field.

At the interference region, where two beams combine again, the amplitude of the neutron beam arriving via
Path B is equal to

c2(t) = c2(B = 0)e∓iωt/2 = eiδ2e∓iωt/2,

and on the other hand for Path A, where there is no change in the amplitude, the amplitude of the neutron
is

c1 = c1(B = 0) = eiδ1 ,

where δ1 and δ2 are phase factors for the beams in Paths A and B, respectively. The state at the interference
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region is, therefore, a superposition of the two beams.

|ψ〉 = c1 |φ〉+ c2e
∓iωt/2 |φ〉 =

(
c1 + c2e

∓iωt/2
)
|φ〉

⇒ 〈ψ|ψ〉 =
(
c1 + c2e

∓iωt/2
)(

c∗1 + c∗2e
±iωt/2

)
〈φ|φ〉

=
(
|c1|2 + |c2|2 + c1c

∗
2e
±iωt/2 + c∗1c2e

∓iωt/2
)

=
(

2 + e∓iωt/2+iδ + e±iωt/2−iδ
)

= 2

(
1 + cos

(
∓ωt

2
+ δ

))
⇒ 〈ψ|ψ〉 = 4 cos2

(
∓ωt

4
+
δ

2

)
The intensity at the interference region shows a sinusoidal variation. t depends on a size of the region with
non-zero magnetic field and is fixed, but we can vary B to observe the oscillation. Assume that the spin
state of the neutron beam via Path B rotates back to the origin spin state after 4π rotation. The time T
used to take the state back to the original state is given by

T =
4π

ω
=

4πmpc

egN∆B
,

but T is also equal to the path length l inside the region with non-zero ~B−field divided by the neutron
velocity v

T =
l

v
=

l

~k/mp
.

Therefore, the value of ∆B that will take the spin state back to the original state is equal to

∆B =
4πmpc

egN
· ~k
lmp

=
4π~ck
egnl

.

Therefore, a spin−1/2 particle requires 4π rotation to get back to the original state. These two experiments
in 1975 showed for the time that the rotation group SO(3) is insufficient to describe the rotation of a quantum
mechanical state, and that in quantum mechanics the larger rotation group SU(2) is required.

6.5 Representations of SU(2)

In the previous lecture, starting from the non-abelian group of rotation we have shown that the generators
of rotation, which are the angular momentum operators, in quantum mechanics must satisfy the following
commutator relation

[Ji, Jj ] = i~εijkJk.
Our goal in this lecture is to find the representations of these operators. We will start by defining

J2 = J2
x + J2

y + J2
z

and
J± = Jx ± iJy.

Then, we can show that [
J2, Ji

]
= 0 i = x, y, z

[Jz, J±] = ±~J±
[J+, J−] = 2~Jz,



6-8 Lecture 6: Rotation Groups and Angular Momentum

which we can use to rewrite J2 as

J2 = J2
z +

1

2
(J+J− + J−J+) = J2

z + J−J+ + ~Jz.

To prove that
[
J2, Ji

]
= 0 for i = x, y, and z, we will only choose the case where i = z.[

J2, Jz
]

=
[
J2
x + J2

y + J2
z , Jz

]
= Jx [Jx, Jz] + [Jx, Jz] Jx + Jy [Jy, Jz] + [J,Jz] Jy

= Jx (−i~Jy) + (−i~Jy) Jx + Jy (i~Jx) + i~JxJy
⇒

[
J2, Jz

]
= 0.

Similar results can be obtained for
[
J2, Jx

]
and

[
J2, Jy

]
. For the rest of the commutator relation, we can

show that

[Jz, J±] = [Jz, Jx ± iJy]

= [Jz, Jx]± i [Jz, Jy]

= i~Jy ± i (−i~Jx)

= ~ (iJy ± Jx)

= ±~ (Jx ± iJy)

⇒ [Jz, J±] = ±~J±,

and

[J+, J−] = [Jx + iJy, Jx − iJy]

= −i [Jx, Jy] + i [Jy, Jx]

= −i (~Jz) + i (−i~Jz)
⇒ [J+, J−] = 2~Jz.

Now, since
[
J2, Jz

]
= 0 (J2 and Jz are compatible), we can find the simultaneous eigenstates of J2 and

Jz, where we will denote eigenvalues of J2 and Jz by a and b, respectively. Hence, we have the following
eigenvalue problems

J2 |a, b〉 = a |a, b〉 and Jz |a, b〉 = b |a, b〉 .
Next we have to solve these eigenvalue problems for the allowed values of a and b. First let us consider

〈a, b|J2|a, b〉 =

〈
a, b

∣∣∣∣ J2
z +

1

2
(J+J− + J−J+)

∣∣∣∣ a, b〉 ,
but 〈a, b|J+J−|a, b〉 and 〈a, b|J−J+|a, b〉 must be greater than zero since J+ is an adjoint of J− and vice
versa. That is, 〈a, b| J+ is a dual state of J− |a, b〉 and 〈a, b| J− is a dual state of J+ |a, b〉.

⇒ 〈a, b|J2|a, b〉 > 〈a, b|J2
z |a, b〉 ,

which implies that
a > b2

The commutator relations [Jz, J±] = ±~J± suggested that J± is a “ladder operator” that raises (J+) or
lowers (J−) the eigenvalue of Jz by a unit of ~. In order to show this, we consider

Jz (J± |a, b〉) = ([Jz, J±] + J±Jz) |a, b〉
= (±~J± + J±b) |a, b〉
= (b± ~) (J± |a, b〉)

⇒ J± |a, b〉 = C±(a, b) |a, b± ~〉 .
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Since a > b2, there must be a maximum bmax = j~ (where we will show later that j is half-integer), which
implies that there must be a state with bmax such that

J+ |a, bmax〉 = 0,

since there is no state with b greater than bmax. Therefore, we have

〈a, bmax|J−J+|a, bmax〉 = |C+(a, bmax)|2 = 0,

but

〈a, bmax|J−J+|a, bmax〉 =
〈
a, bmax

∣∣ J2
x + J2

y + iJxJy − iJyJx
∣∣ a, bmax

〉
=

〈
a, bmax

∣∣ J2 − J2
z − ~Jz

∣∣ a, bmax

〉
⇒ 0 = |C+(a, a, bmax)|2 = a− b2max − ~bmax

⇒ a = b2max + ~bmax = ~2j2 + ~2j
⇒ a = ~2j(j + 1)

Similarly, from a > b2, there must be a minimum bmin such that

J− |a, bmin〉 = 0.

Therefore, we have

〈a, bmin|J+J−|a, bmin〉 =
〈
a, bmin

∣∣ J2
x + J2

y − iJxJy + iJyJx
∣∣ a, bmin

〉
=

〈
a, bmin

∣∣ J2 − J2
z + ~Jz

∣∣ a, bmin

〉
⇒ 0 = |C−(a, a, bmin)|2 = a− b2min + ~bmin

Hence, we have the relationship between b2min and b2max from

a− b2min + ~bmin = a− b2max − ~bmax

⇒ bmin = −bmax.

⇒ 2bmax = n~,

where n is an integer. Therefore, j =
n

2
can be integer (if n is even) or half-odd-integer (if n is odd).

So, now we have solve the eigenvalue problems for a and b. Given j we obtain

a = ~2j(j + 1)

and

b = m~ ,

where m = −j,−j + 1, · · · , j − 1, j. Therefore, instead of labeling the eigenstates using a and b, we will
switch to j and m

|a, b〉 → |j,m〉

with

J2 |j,m〉 = ~2j(j + 1) |j,m〉 and Jz |j,m〉 = m~ |j,m〉

We call j the total angular momentum quantum number and m the magnetic quantum number.
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Next, we want to find the representations for J− and J+ by considering C±(j,m). From

|C±(a, b)|2 = a− b2 ∓ ~b
⇒ |C±(j,m)|2 = ~2

(
j(j + 1)−m2 ∓m

)
= ~2 (j ∓m) (j ±m+ 1)

⇒ C±(j,m) = ~
√

(j ∓m)(j ±m+ 1).

Therefore,

J± |j,m〉 = ~
√

(j ∓m)(j ±m+ 1) |j,m± 1〉

Therefore, the matrix elements for J2, Jz, and J± in the |j,m〉 basis are given by

〈j′,m′|J2|j,m〉 = ~2j(j + 1)δj′,jδm′,m

〈j′,m′|Jm|j,m〉 = m~δj′,jδm′,m
〈j′,m′|J±|j,m〉 = ~

√
(j ∓m)(j ±m+ 1)δj′,jδm′,m±1

6.6 Orbital angular momentum

We will use the same trick that we have used before to find the eigen wavefunctions for the harmonic
oscillators. First, we find the state with the largest value of ml, that is, ml = l. Since ml = l is the largest
possible value of ml given l, the state |l,ml = l〉 = |l, l〉 cannot be “raised” by L+ anymore, that is,

L+ |l, l〉 = 0.

Next we will have to write the state L+ |l, l〉 in the coordinate basis, which we will choose to write it in the
spherical coordinate. We hence have to find an expression for L+ in the spherical coordinate.

L+ = Lx + iLy

but we know that in the coordinate basis

Lx → y

(
−i~ ∂

∂z

)
− z

(
−i~ ∂

∂y

)
Ly → z

(
−i~ ∂

∂x

)
− x

(
−i~ ∂

∂z

)
Hence,

L± = Lx ± iLy

→ (y ∓ ix)

(
−i~ ∂

∂z

)
− z

[
~
(
−i ∂
∂y
∓ ∂

∂x

)]
Now you know the trick. Since it is easier to work in the spherical coordinate, we will change from the
cartesian coordinate to the spherical coordinate. However, since the derivation is quite lengthy and does not
add any new physics idea so I will not reproduce it here. Instead, I encourage you to read the beginning of
Chapter 11 in Gasiorowicz [5]. The result of the coordinate transformation is

L± → ±~e±iφ
(
∂

∂θ
± i cot θ

∂

∂φ

)
.
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Similarly, we can find the expressions for Lx and Ly in the coordinate basis:

Lx → i~
(

sinφ
∂

∂θ
+ cosφ cot θ

∂

∂φ

)
Ly → i~

(
− cosφ

∂

∂θ
+ sinφ cot θ

∂

∂φ

)
Therefore, Eq. 6.1 written in the coordinate basis becomes

〈θ, φ|L+|l, l〉 = 0

⇒
(
∂

∂θ
+ i cot θ

∂

∂φ

)
Y ll (θ, φ) = 0,

where 〈θ, φ|l,ml〉 = Y ml

l (θ, φ) is the eigen wavefunction in the coordinate basis of L2 and Lz. Note that we
will ignore the r dependence of the wave function for now and only consider the θ and φ dependence.

In order to solve this differential equation, we first have to recognize that from the two dimensional rotation
we know that the eigen wavefunction of Lz, which depends only on φ is equal to eimlφ, which has to remain
the same in the three dimensional case as well. Therefore, we will write Y ml

l (θ, φ) as

Y ml

l (θ, φ) = Θml

l (θ)eimlφ.

The above differential equation hence becomes(
∂

∂θ
+ i cot θ

∂

∂φ

)
Θl
l(θ)e

ilφ = 0

⇒
(
∂

∂θ
− l cot θ

)
Θl
l(θ) = 0

⇒ dΘl
l

Θl
l

= l
cos θ dθ

sin θ
= l

d(sin θ)

sin θ

⇒ Θl
l(θ) = C (sin θ)

l

Therefore, Y ll (θ, φ) becomes

Y ll (θ, φ) = Nll (sin θ)
l
eilφ.

where N is the normalization factor such that

∫ 1

−1

∫ 2π

0

d(cos θ)dφ
∣∣Y ll (θ, φ)

∣∣ = 1, which gives

Nll =

[
(2l + 1) (2l)!

4π

]1/2
1

2ll!
,

At the end, we can write the state with the largest value of ml for a given value of l as

Y ll (θ, φ) = (−1)l
[

(2l + 1) (2l)!

4π

]1/2
1

2ll!
(sin θ)

l
eilφ.

where the factor (−1)ml (in this case (−1)l since ml = l) called the Condon-Shortley phase is a consequence
of the operators L− and L+, which move the states labelled by ml down and up, respectively, as we will see
later.

Now in order to obtain other eigen wave functions with different value of ml, all we have to do is to apply
L−, that is,

L− |l, l〉 = ~ [(l + 1) (1)]
1/2 |l, l − 1〉 = ~(2l)1/2 |l, l − 1〉
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In the coordinate basis, we have

〈θ, φ|L−|l, l〉 = ~(2l)1/2 〈θ, φ|l, l − 1〉

⇒ Y l−1l (θ, φ) =
1

~(2l)1/2

[
(−1)~e−iφ

(
∂

∂θ
− i cot θ

∂

∂φ

)]
Y ll .

= (−1)l−1Nl,l−1

[
e−iφ

(
∂

∂θ
− i cot θ

∂

∂φ

)]
(sin θ)

l
eilφ

= (−1)l−1Nl,l−1

[
ei(l−1)φ

(
∂

∂θ
+ l cot θ

)]
(sin θ)

l

= (−1)l−1Nl,l−1e
i(l−1)φ 1

(sin θ)l
d

dθ
(sin θ)

2l

In the last step we use the following identity:(
∂

∂θ
+ l cot θ

)
f(θ) =

1

(sin θ)l
d

dθ
(sin θ)

l
f(θ).

For our case, f(θ) = (sin θ)lNote that one action of L− will introduce one factor of −1; this is the reason
why we need to multiply by the phase factor of (−1)ml . We can continue this process until we obtain all
2l + 1 states of the eigen wavefunctions for a given value of l. For example, for Y l−2l (θ, φ), we have

Y l−2l (θ, φ) = (−1)l−2Nl,l−2
ei(l−2)φ

(sin θ)l−1
d

dθ

[
1

(sin θ)

d

dθ
(sin θ)

2l

]
Or, we can rewrite both Y l−1l (θ, φ) and Y l−2l (θ, φ) in terms of cos θ and d(cos θ), noting that

sin2 θ = 1− cos2 θ

and
d

d(cos θ)
=
−1

sin θ

d

dθ
.

Hence, for m > 0, we have

Y l−1l = (−1)l−1Nl,l−1e
i(l−1)φ 1

(sin θ)l−1
d

d(cos θ)
(sin θ)

2l

Y l−2l = (−1)l−2Nl,l−2e
i(l−2)φ 1

(sin θ)l−2
d2

d(cos θ)2
(sin θ)

2l

...

Y ml

l = (−1)mlNl,ml
eimlφ

1

(sin θ)ml

dl−ml

d(cos θ)l−ml
(sin θ)

2l

Again the normalization factor, Nl,ml
can be calculated by requiring that∫ 1

−1

∫ 2π

0

d(cos θ)dφ |Y ml

l (θ, φ)| = 1.

However, the integration is quite complicated so I recommend that if you want to try it for fun, you might
want to try it with Mathematica. Finally, the normalized eigen wave functions of the state |l,m〉 written in
the coordinate basis for ml > 0 can be expressed in the following form

Y ml

l (θ, φ) = (−1)l
[

(2l + 1)(2l)!

4π

]1/2
1

2ll!

[
(l +ml)!

(2l)!(l −ml)!

]1/2
eimlφ

1

(sin θ)ml

dl−ml

d(cos θ)l−ml
(sin θ)2l
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or alternatively we can write it as

Y ml

l (θ, φ) = (−1)ml

[
(2l + 1)

4π

(l −ml)!

(l +ml)!

]
eimlφPml

l (cos θ),

where Pml

l (x), (0 6 ml 6 l), is called the associated Legendre polynomials. For ml 6 0, we have

Y −ml

l = (−1)ml (Y ml

l )
∗

We call the functions Y ml

l the spherical harmonics. The first few terms of the spherical harmonics are

Y 0
0 =

1√
4π

Y ±11 = ∓
√

3

8π
sin θe±iφ

Y 0
1 =

√
3

4π
cos θ

Y ±22 =

√
15

32π
sin2 θe±2iφ

Y ±12 = ∓
√

15

8π
sin θ cos θe±iφ

Y 0
2 =

√
5

16π

(
3 cos2 θ − 1

)
Note that by just looking at these eigen wave functions, we can readily read the value of l and ml from the
combined power of cos θ and sin θ and the pre-factor in front of iφ in the exponential term.

In order to understand the spherical harmonics functions better, it is a good idea to express them in the
(spherical) coordinate basis. The figure below shows the spherical harmonics for l = 2. As you can see, if
ml is large (in this case the largest value of ml is equal to 2), the wave function is mostly confined in the
x − y plane, which is what we would expect if the angular momentum along the z-axis is large; remember
that ml~ denotes the z-component of the angular momentum. In the other extreme, if ml = 0, that is, the
z-component of the angular momentum is small, the wave function will be along the z-axis. This behavior is
consistent with a classical picture, where ~L = ~r× ~p, that is, if the wave function is localized along the z-aixs,
~r is small and hence the angular momentum along z is also small. On the other hand, if the wave function
spreads out in the x− y plane, then ~r becomes large and hence the angular momentum along z is large.

We can also solve for the spherical harmonics in terms of L2 and Lz in the coordinate basis directly as
well. In fact, if you have solved the hydrogen atom problem in other class, you have most likely done those
calculations already. In the coordinate basis, L2 and Lz become

L2 → (−~2)

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
Lz → −i~ ∂

∂φ

That is, we will obtain the following differential equations

〈θ, φ|L2|l,ml〉 = l(l + 1)~2 〈θ, φ|l,ml〉

⇒ (−~2)

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
Y ml

l (θ, φ) = l(l + 1)~2Y ml

l
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and

〈θ, φ|L|l,ml〉 = ml~ 〈θ, φ|l,ml〉

⇒ − i~ ∂

∂φ
Y ml

l (θ, φ) = ml~2Y ml

l .

To solve these equations we can use the separation of variables and write

Y ml

l (θ, φ) = Θml

l (θ)Φml
(φ).

However, we will not solve for Y ml

l but instead we will use these differential equations to simplify our future
calculations in finding the eigenenergies and eigenwavefunctions of the hydrogen atom.

6.7 Rotation operators

As suggested by what we have discussed in the previous section, for each j we can construct an irreducible
representation of the SU(2) algebra, where the Hilbert space Hj is spanned by a set

{|j,m〉 ,where m = −j,−j + 1, · · · , j − 1, j} .

Then we can use the representation of J to construct the representation of the rotation group D(R), where
R is rotation in a classical sense. The matrix elements of D(R) in the basis |j,m〉 is given by

D(j)
m′,m(R) = 〈j,m′|e−i(J

(j)·n̂)φ/~|j,m〉 .

This is called Wigner functions.

Since J2 commutes with Ji for all i’s, e−i(J
(j)·n̂)φ/~ does not change the eigenvalue of J2. Therefore,

D(j)
m′,m(R) form a (2j+ 1)× (2j+ 1) matrix with a definite value of j, and this matrix cannot be broken into

smaller blocks. We refer to this matrix as the (2j + 1)−dimensional irreducible representation of D(R).

Our task is to figure out the representation of D(R). Let us look at some of the simple cases where j is
small.

1. j = 0 (trivial case)

The only eigenstate is |j,m〉 = |0, 0〉, and

J2 |0, 0〉 = Jz |0, 0〉 = J± |0, 0〉 = 0.

The rotation operator is
D(0)(R) |0, 0〉 = |0, 0〉 ,

that is, for all R
D(0)(R) = 1.

2. j = 1 (spin−1/2 systems)

The eigenstates are
|j,m〉 = |1/2,±1/2〉 ≡ |Sz = ±1〉 ≡ |±〉 .

In this basis, the angular momentum operators are

Ji = Si =
~
2
σi,
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where i = x, y, z, and σi are the Pauli matrices. The relevant angular momentum operators are

J2 =
3~2

4

(
1 0
0 1

)
, Jz =

~
2

(
1 0
0 −1

)
, J+ = ~

(
0 1
0 0

)
, J− = ~

(
0 0
1 0

)
The rotation operator is given by

D(1/2)(n̂, φ) = e−i(n̂·~σφ/2) = 1 cos
φ

2
− i (n̂ · ~σ) sin

φ

2
.

As you can see, the rotation operator becomes a bit more complicated.

3. j = 1 (spin-1 systems)

The eigenstates are

|j,m〉 = |1,±1〉 and |1, 0〉 .

The angular momentum operators are

Jz = ~

1 0 0
0 0 0
0 0 −1

 , Jx =
~√
2

0 1 0
1 0 1
0 1 0

 , Jy =
~√
2

0 −i 0
i 0 −i
0 i 0


and

J+ = ~
√

2

0 1 0
0 0 1
0 0 0

 , J− = ~
√

2

0 0 0
1 0 0
0 1 0


For the rotation around an axis defined by a unit vector n̂, the rotation operator is given by

D(1)(n̂, φ) = e−i
~J·n̂φ/~,

which can be rewritten as

D(1)(n̂, φ) = (1)−
(
Jn
~

)2

(1− cosφ)− iJn
~

sinφ,

where Jn ≡ ~J · n̂. However, since the non-trivial rotation is the rotation about the y−axis, we will only
consider this rotation. The rotation operation is given by

D(1)(ŷ, φ) = e−iJyφ/~.

Similar to the S = 1/2 case, we can expand the exponential using the Taylor expansion, keeping in
mind that (

J
(1)
y

~

)3

=
J
(1)
y

~
.

We find that

D(1)(ŷ, φ) = 1−
(
Jy
~

)2

(1− cosφ)− iJy
~

sinφ.

We can see that D(j)(R) can become very complicated for large j. Therefore, we need a better method
to write down D(j)(R).
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6.8 Schwinger’s oscillator model of angular momentum

Consider two types of simple harmonic oscillators (SHO), which we will call + type and − type. We define
operators for both types as follows:

+ type − type

N+ = a†+a+ N+ = a†−a−[
a+, a

†
+

]
= 1

[
a−, a

†
−

]
= 1[

N+, a
†
+

]
= a†+

[
N−, a

†
−

]
= a†−

[N+, a+] = −a+ [N−, a−] = −a−
(6.1)

where a†± and a± are raising and lowering operators and N± are the number operators for ± type. For
different types of SHO, the commutators are zero since we assume that there is no coupling between the two
oscillators. That is, [

a+, a
†
−

]
=
[
a−, a

†
+

]
= [a+, a−] =

[
a†+, a

†
−

]
= 0,

and in particular
[N+, N−] = 0.

Therefore, since N+ and N− are compatible, we can label the eigenstates using the eigenvalues of N+ and
N−, giving the simultaneous eigenstates |n+, n−〉, where

N+ |n+, n−〉 = n+ |n+, n−〉 , N− |n+, n−〉 = n− |n+, n−〉 ,

and we know that

a†+ |n+, n−〉 =
√
n+ + 1 |n+ + 1, n−〉 , a†− |n+, n−〉 =

√
n− + 1 |n+, n− + 1〉

a+ |n+, n−〉 =
√
n+ |n+ − 1, n−〉 , a− |n+, n−〉 =

√
n− |n+, n− − 1〉

We can construct |n+, n−〉 from |0, 0〉 using a†+ and a†− as follows

|n+, n−〉 =

(
a†+

)n+√
n+!

(
a†−

)n−√
n−!

|0, 0〉

Now, we can make a connection between a†±, a±, and the angular momentum operators by defining the

angular momentum operators in terms of a†± and a±. Note that we only have to define J± and Jz, and then
check that all commutator relations for J are satisfied.

J+ = ~a†+a−
J− = ~a†−a+

Jz =
~
2

(
a†+a+ − a

†
−a−

)
=

~
2

(N+ −N−)

We need to show that

[Jz, J±] = ±~J±
[J+, J−] = 2~Jz[
J2, Jz

]
= 0
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For example, first consider

[Jz, J±] =
~2

2

[
a†+a+ − a

†
−, a−, a

†
+a−

]
=

~2

2

([
a†+a+, a

†
+a−

]
−
[
a†−a−, a

†
+a−

])
but [

a†+a+, a
†
+a−

]
= a†+a+a

†
+a− − a

†
+a−a

†
+a+

= a†
(
a†+ + 1

)
a− − a†+a

†
+a+a−

= a†+a
†
+a+a+ + a†+a− − a

†
+a
†
+a+a−[

a†+a+, a
†
+a−

]
= = a†+a−

Similarly, [
a†−a−, a

†
+a−

]
= −a†+a−.

Therefore,

[Jz, J±] =
~2

2

(
a†+a− −

(
−a†+a−

))
= ~2a†+a− = ~J+.

I will leave as an exercise for you to prove the rest of the above commutator relations. Next let us consider
the operator J2. We can write J2 as

J2 = J2
z +

1

2
(J+J− + J−J+) ,

where

J+J− = ~2a†+a+ = ~2a†+
(
a†−a− + 1

)
a+

= ~2
(
a†+a+ + a†+a

†
−a−a+

)
= ~2

(
a†+a+ +

(
a†−a−

)(
a†+a+

))
⇒ J+J− = ~2 (N+ +N−N+) ,

and similarly,
⇒ J−J+ = ~2 (N− +N+N−) .

Therefore,

⇒ J2 =
~2

4
(N+ −N−)

2
+

~2

2
(N+ +N− + 2N+N−)

=
~2

2

(
N2

+

2
−N+N− +

N2
−

2
+ (N+ +N−) + 2N+N−

)
=

~2

2

(
1

2

(
N2

+ + 2N+N− +N2
−
)

+ (N+ +N−)

)
.

Let N = N+ +N−,

⇒ J2 =
~2

2

(
1

2
N2 +N

)
= ~2

N

2

(
N

2
+ 1

)
,
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which implies that j =
n

2
, where n = n+ + n− is an integer and eigenvalue of N , which is a total number of

“spins” (including both “spin-up” created by a†+ and “spin-up” created by a†−).

The action of all momentum operators on |n+, n−〉 can be summarized as follows

J2 |n+, n−〉 = ~2
n

2

(n
2

+ 1
)
|n+, n−〉

Jz |n+, n−〉 =
~
2

(N+ −N−) |n+, n−〉 =
~
2

(n+ + n−) |n+, n−〉

J+ |n+, n−〉 = ~a†+a− |n+, n−〉 = ~√n−
√
n+ + 1 |n+ + 1, n− − 1〉

J− |n+, n−〉 = ~a†−a+ |n+, n−〉 = ~√n+
√
n− + 1 |n+ − 1, n− + 1〉

Hence, we can define j and m in terms of n+ and n− using

n+ → j +m and n− → j −m,

which gives

m =
n+ − n−

2

while

j =
n+ + n−

2
≡ n

2
,

which the same as what we have obtained before when considering J2. Therefore, we can think of n+ as a
number of spin-ups and n− as a number of spin-downs. n = 2j is a total number of spin-1/2 particles while

2m = n+ − n− is a number of spin-ups minus a number of spin-downs. In this sense, a†+ and a†− create one
spin-up and one spin-down while a+ and a− annihilate one spin-up and one spin-down, respectively. We can
then summarize the action of the momentum operators in this Schwinger’s scheme as follows

• J2 counts a total value of spins.

• Jz counts a value of spins along the z−axis.

• J+ changes spin-down to spin-up (flip one spin-down). In other words, it annihilates one spin-down
and creates one spin-up.

• J− changes spin-up to spin-down (flip one spin-up). In other words, it annihilates one spin-up and
creates one spin-down.

Now, we are ready to label the state using j and m instead of n+ and n−.

|n+, n−〉 −→ |j,m〉

⇒ |j,m〉 =

(
a†+

)j+m (
a†−

)j−m
√

(j +m)!(j −m)!
|0〉 ,

where |0〉 is a vacuum state with j = m = 0. In particular,

|j, j〉 =

(
a†+

)2j
√

(2j)!
|0〉 and |j,−j〉 =

(
a†−

)2j
√

(2j)!
|0〉 .
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Using this construction of |j,m〉 in terms of a†±, we can construct the rotation operator D(R) = e−iJyφ/~

more easily. When D(R) acts on |j,m〉, we have

D(R) |j,m〉 = D(R)



(
a†+

)j+m (
a†−

)j−m
√

(j +m)!(j −m)!

 |0〉


=

(
D(R)a†+D−1(R)

)j+m (
D(R)a†−D−1(R)

)j−m
√

(j +m)!(j −m)!
D(R) |0〉 ,

where D(R) |0〉 = |0〉. We obtain the above expression by realizing that the rotation of |j,m〉 is the same as

the counter-rotation (transformation) of the operators a†± by the same rotation operator D(R). So, we have

to consider the transformation of a†± by D(R).

D(R)a†±D−1(R) = e−iJyφ/~a†±e
iJyφ/~

= a†± + iφ

[
−Jy
~
, a†±

]
+
i2φ2

2!

[
−Jy
~
,

[
−Jy
~
, a†±

]]
+ · · · ,

where we use the identity for eABe−A, which is given by

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · =

∞∑
n=0

1

n!
An{B},

where
A0{B} = B, A1{B} = [A,B], A2{B} = [A, [A,B]], A3{B} = [A, [A, [A,B]]], · · ·

We note that Jy =
1

2i
(J+ − J−) =

~
2i

(
a†+a− − a

†
−a+

)
, and hence[

−Jy
~
, a†+

]
=

1

2i

[
a†−a+ − a

†
+a−, a

†
+

]
=

1

2i
a†−[

−Jy
~
, a†−

]
=

1

2i

[
a†−a+ − a

†
+a−, a

†
−

]
=
−1

2i
a†+,

and [
−Jy
~
,

[
−Jy
~
, a†+

]]
=

1

2i

[
−Jy
~
, a†−

]
=

1

2i

(
−1

2i

)
a†+ =

1

22
a†+[

−Jy
~
,

[
−Jy
~
, a†−

]]
=
−1

2i

[
−Jy
~
, a†−

]
=
−1

2i

(
1

2i
a†−

)
=
−1

22
a†−.

I hope that you can see the pattern and we can now calculate all higher terms. The result is

D(R)a†±D−1(R) = a†± ±
φ

2
a†∓ −

1

2!

(
φ

2

)2

a†± ∓
1

3!

(
φ

2

)3

a†∓ + · · ·

⇒ D(R)a†±D−1(R) = a†± cos
φ

2
± a†∓ sin

φ

2
.

Therefore,

D(R) |j,m〉 =

(
a†+ cos φ2 + a†− sin φ

2

)j+m (
a†− cos φ2 − a

†
+ sin φ

2

)j−m
√

(j +m)!(j −m)!
|0〉 .
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We can rewrite this expression using the binomial expansion, where

(x+ y)
N

=

N∑
k=0

N !

(N − k)!k!
xN−kyk,

by letting x = a†+ cos φ2 and y = a†− sin φ
2 for the first term and x = −a†+ sin φ

2 and y = a†− cos φ2 for the
second term.

D(R) |j,m〉 =

j+m∑
k=0

j−m∑
l=0

(j +m)!(j −m)!

(j +m− k)!k!(j −m− l)!l!
1√

(j +m)!(j −m)!

(
a†+ cos

φ

2

)j+m−k (
a†− sin

φ

2

)k
×
(
−a†+ sin

φ

2

)j−m−l(
a†− cos

φ

2

)l
|0〉 .

But we know that D(R) only mixes m and preserves j, and hence we can write D(R) as

D(R) |j,m〉 =

j∑
m′=−j

d
(j)
m′,m |j,m〉 =

j∑
m′=−j

d
(j)
m′,m

(
a†+

)j+m (
a†−

)j−m
√

(j +m)!(j −m)!
|0〉 ,

where d
(j)
m′,m is a (2j + 1)× (2j + 1) matrix that we want to find. To solve for d

(j)
m′,m all we have to do is to

match coefficients of terms with the same order of a†± from both equations for D(R) |j,m〉. By considering

the exponent of the a†+ term, we obtain

j +m− k + j −m+ l = j +m′

⇒ m′ = j − k − l,

and similarly for a†−, we have

k + l = j −m′

⇒ m′ = j − k − l,

So now we can choose to eliminate l or k. Let us take

l = j − k −m′

and eliminate l from the expression for d
(j)
m′,m. Therefore, we obtain

d
(j)
m′,m(ŷ, φ) =

j+m∑
k=0

(−1)k−m+m′
√

(j +m)!(j −m)!
√

(j +m′)!(j −m′)!
(j +m− k)!k!(j − k −m′)!(k −m+m′)!

(
cos

φ

2

)2j−2k+m−m′ (
sin

φ

2

)2k−m−m′

This is a general solution for the matrix elements of the rotation operator D(R) = e−iJyφ/~ for any value

of j, where m,m′ = −j,−j + 1, · · · , j − 1, j. Therefore, d
(j)
m′,m are the elements of the (2j + 1) × (2j + 1)

matrix, a representation of the rotation operator D(R).
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