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For the first time, we will have to include the electron-electron interaction in order to be able to describe the phe-
nomenon in this class. The first phenomenon that forces us to have to do that is superconductivity, which only arises
when the interaction between electrons is considered. However, before we go into details how the electron-electron
interaction can give rise to superconductivity. We will first learn about the physical properties that superconductors
have. Note that in this class we will only consider the so called “conventional superconductor” and will ignore the other
class of superconductors called “high-transition-temperature (High-Tc) superconductors”, whose physics is currently
unknown and intensively studied.

10.1 Physical Properties of Superconductors

The properties of the conventional superconductors that we have learned from doing countless experiments are the
followings:

1. Superconductivity is found in non-magnetic metal. These metals enter the phase with zero resistivity at low
temperatures, that is, T < Tc where Tc is called a critical temperature. Tc can be as low as 0.01 K in some
conventional superconductors and as high as 150 K in some high-Tc superconductors.

2. If there is a magnetic impurity in the superconductors (hereafter we will use superconductors to mean conven-
tional superconductors for brevity), such as a small amount of iron (Fe), superconductivity will be suppressed
or disappear.

3. The application of external magnetic field will suppressed or kill superconductivity. Furthermore, if the magnetic
field exceeds a critical field Hc, superconductivity will disappear all together.

As we can see from above, superconductivity and magnetism are competing phases, that is, both cannot co-exist. This
fact is also shown in the Meissner effect.

Meissner Effect Besides having zero resistivity at low temperatures, superconductors have another unique and im-
portant properties, that is, the total magnetic field inside it has to be zero (B = 0). In other words, if H < Hc and
T < Tc, magnetic field lines of the external magnetic field inside the superconductors will be pushed away. Suppose
that a piece of the superconducting sample is thin and long. We can write the magnetic field inside as a sum of two
terms; one from the external magnetic field and the other from the induced magnetic field from the superconductors
themselves:

B = Ba +µ0M = 0,

where Ba is the applied magnetic field and M is the induced magnetization. From this expression, we obtain

M =−Ba

µ0
.
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Therefore, the superconductors show the perfect diamagneitism (note that the direction of the magnetization is opposite
to the direction of the applied field) and propel all external magnetic field line.

As we have mentioned, the Meissner effect is unique to the superconductors and will not occur in the perfect conduc-
tors. We will define the perfect conductors as a group of material with zero resistivity. Therefore, one can say that
the Meissner effect is NOT a result of the zero resistivity. To illustrate this point, let us consider the transport and
Maxwell’s equations. First, we know that

~E = ρ~j = 0,

since ρ = 0 for the perfect conductors. However, from one of the Maxwell’s equations, we know that

∂~B
∂ t

=−∇×~E = 0,

that is, there is no change of magnetic field when the material change from the normal state to the perfect conducting
state. However, this result contradicts the experimental found since we know that from the experiment the magnetic
field inside the superconductors changes from Ba to zero when the temperature decreases below the critical tempera-
ture Tc. Therefore, being superconducting is different from being perfect conducting whereas for the former we have
to include the Meissner effect as well. Furthermore, for the perfect conductors, the mean free path has to be infinite,
which means the perfect conductor cannot create the eddy current to counter the external magnetic field forever. It
turn out that the field can penetrate the sample at the rate of about 1 cm/hour.

Based on their response to the external magnetic field, we can catagorize the superconductors into two groups:

1. Type-I superconductors: In this case, the Meissner effect is always complete in the superconducting state.
That is, if H < Hc, no magnetic field line can penetrate the sample and the sample is superconducting. On the
other hand, if H > Hc, magnetic field lines can penetrate all sample and superconductivity disappears. In this
case, Hc is usually very small in an order of 100− 1,000 Oe. This group contains pure specimens such as Pb,
Hg, and etc.

2. Type-II superconductors: In this case, there are two important values of magnetic field. The first is called
Hc1, which indicate that the Meissner effect is complete for H < Hc1. The other is called Hc2, which is larger
than Hc1. If Hc1 < H < Hc2, some magnetic field lines can penetrate the sample but the field does not kill
superconductivity, that is, the sample remains in the superconducting state with only some part which the field
can penetrate become a normal state. If H > Hc2, superconductivity disappears. In general, the materials in this
group are alloys or transition metals that have high resistivity in the normal state, that is, the mean free path is
short at high temperatures. Normally, Hc2 can be very high, such as 41 T in alloys of Nb, Al and Ge or 54 T in
PbMo6S8. Therefore, Hc2 can be much larger than Hc. Type-II superconductors are used to build a high-field
magnet since the heat loss from electric resistance is kept at minimal and they remains superconducting even at
very high magnetic field.

Heat Capacity From the statistical mechanics class, we all know that heat capacity is related to entropy through the
following integral expression:

S =
∫ T

0

C(T ′)
T ′

dT ′,

where we can measure the heat capacity as a function of temperature, and hence calculate the entropy. From the
experiments, we found that the superconducting state has lower entropy than the normal state, that is, going through
Tc the entropy of the system decreases rapidly. This results implies that in the superconducting state electrons are
more ordered than those in the normal state. However, the difference in entropy between the normal state and the
superconducting state is very small compared with the total entropy of the system, indicating that only a small fraction
of electrons is superconducting while the rest are normal electrons. The experiments show that this entropy difference
is only 10−4 kB/atom.
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We know from the previous chapter that in the normal state the heat capacity can be expressed by the following
equation

C
T

= A+BT 2,

where the first term on the right hand side is the electronic contribution and the second term the phonon contribution.
In the superconducting state, the heat capacity will deviate from this formula. Since we are only interested in the heat
capacity due to the superconducting electrons, we will only consider the difference of the heat capacity between the
normal state and superconducting state; Ces =Ctot −Cphonon. From the experiments, we found that Ces is equal to

Ces

T
=C0e−∆sTc/T .

That is, the superconducting part of the heat capacity can be expressed in terms of the exponential function, which
indicates that there is an energy gap in the system.

Energy Gap The heat capacity measurements give us a hint that there exists the energy gap in the superconducting
state. This gap is, however, different from the gap in the insulators or semiconducting. Whereas the energy gap
in the latter is due to the electron-lattice (or electron-nucleus interaction), the energy gap in the former is due to the
electron-electron interaction. It turns out that in superconductors electrons can interaction with other electrons through
phonons and the type of the interaction is attractive, which pairs two electrons in the momentum space with the wave
vectors~k and −~k. We will study this interaction in more detail when we get to the microscopic theory later in this
class. Furthermore, we also found that the superconducting gap gives rise to an exponential form e−Eg/2kBT instead of
e−Eg/kBT , which indicates that two electrons are involved in forming the superconducting state.

Isotope effect The final hint to the mechanism behind superconductivity is the isotope effect. It was found that for
Hg Tc changes from 4.185 K to 4.146 K when its atomic mass changes from 199.5 to 203.4. The relation between the
atomic mass M and Tc can be expressed by

Mα Tc =C,

where C and α are constant and can be different for different elements. This clue is very important since it leads
to the obvious candidate (now that we know). That is, phonons must play an important role in superconductivity,
since by changing the mass of the same element, we change the phonon energy as we have learned in this class. And
that fact for some reason, affects Tc. From the equation above, we can see that increasing M will decrease Tc. In
other words, decreasing the energy of phonons, which is a result of increasing M, will decrease Tc or will suppress
superconductivity. Therefore, superconductivity must be related to lattice vibrations or phonons.

10.2 Phenomenological Theory

In this section, we will try to describe the results in the previous section using the phenomenological theory, which
means that we will not attempt to explain the underlying mechanism or microscopic theory of the phenomena.

London equation We will start by considering the phenomenon of the penetration of the magnetic flux. The Meiss-
ner effect indicates that χ = −1, perfect diamagnetism for superconductors. We learned in the previous section that
we cannot use the equation ~j = σ~E. Instead, we will suppose that the current density ~j is proportional to the vector
potential ~A, that is,

~j =− 1
µ0λ 2

L

~A,
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where λL is a constant called London’s penetration dept. The form of the constant term will be clear in a minute. Next,
let us take ∇× on both sides of the equation

∇×~j =− 1
µ0λ 2

L
∇×~A =− 1

µ0λ 2
L

~B.

And from Maxwell’s equations, we know that

∇×~B = µ0~j

∇×∇×~B = −∇
2~B = µ0∇×~j

⇒ ∇
2~B =

~B
λ 2

L

This equation is called the London equation and as we can see that it implies that ~B cannot be uniform in space, that
is, ~B(x) cannot be a constant except when ~B = 0. And for ~B = 0, ~j must be zero, which is different from the case of
the perfect conductor. The general solution for this equation is

B(x) = B0e−x/λL ,

Later in this chapter, we will derive the expression for the London penetration depth. However, for now we will simply
state the result of that derivation

λL =

(
ε0mc2

nq2

)1/2

,

where m and q are a mass and charge of the particle and n is its concentration. The London penetration depth in-
dicates the length scale from the surface which superconductors would allow magnetic flux to penetrate. Normally,
superconductivity disappears in the penetrated region.

Coherence Length The coherence length ξ is the length scale of the layer connecting the normal state, which the
magnetic flux can reside, and the superconducting state where the magnetic flux is absent. The difference between ξ

and λL can be used to characterize the type of the superconductors. For Type-I superconductor, ξ � λ . On the other
hand, for Type-II superconductor, ξ � λ .

We can approximate the coherence length from the energy gap using the Heisenberg uncertainty principle, that is,

∆ = δE = δ

(
P2

2m

)
=

PF

m
δP = vF δP,

where PF and vF are the Fermi momentum and Fermi velocity. From the uncertainty principle, we have

ξ0 ∼
h

δP
∼ hvF

∆
∼ 1

kF

EF

∆
.

Normally, EF ∼ 103−104∆ and kF ∼ 108 m−1. Therefore, the coherence length comes out to be about 103 Å, which
is about 103 times of the lattice constant.

10.3 Microscopic Theory

In this section, we will attempt to calculate the energy gap from the microscopic theory. This microscopic theory
is called the BCS theory after three physicists Bardeen, Cooper, and Shreiffer who published their much celebrated
paper on superconductivity in 1957. The BCS theory of superconductivity successfully explain the phenomenon and
has the following key features.
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1. The attraction between electrons creates a lower ground state compared to the free electron model and this
ground state is separated from the lowest excited state by an energy gap.

2. The attractive interaction between electrons is due to lattice vibrations or phonons.

3. The transition temperature Tc can be calculated from the density of states of one electron at the Fermi level and
the electron lattice interaction.

4. Thermodynamic properties and the critical field can be explained in terms of the energy gap while the penetration
depth and the coherence length are the results of the BCS theory.

Let us consider a two-electron state, which can be written as

ψ(~r1,~r2) = ∑
~k

g(~k)ei~k·(~r1−~r2),

where g(~k) = 0 if |~k|< kF . The Hamiltonian can be written as

H ψ =− h̄2

2m

(
∇

2
1 +∇

2
2
)

ψ +V (~r1,~r2)ψ = (E +EF)ψ.

V (~r1,~r2), which is due to the electron-phonon interaction, gives rise to the binding energy between two electrons with
opposite spins, where the magnitude of the momenta of the two electrons are equal but their direction are opposite.
In this case, E < 0 since the energy of the system decreases by promoting some electrons outside the Fermi sea and
binding them. By substituting the wave function to the Hamiltonian, we obtain

h̄2k2

m
g(~k)+∑

k′
g(~k′)Vkk′ = (E +2EF)g(~k),

where we cancel out the ∑k ei~k·(~r1−~r2), and Vkk′ is a Fourier transform of V (~r1,~r2), that is,

Vkk′ =
1
L3

∫
V (~r) e−i~r·

(
~k−~k′

)
d~r

We can approximate that the integral yields a constant and write Vkk′ as

Vkk′ =

{
− V

L3 , if h̄2k2
2m < EF + h̄ωD

0, otherwise

}
,

where ωD is the Debye frequency, which implies the range of energy within which phonons can bind two electrons.
Substituting the expression for Vkk′ to the equation above, we get

1 =
V
L3 ∑

k

1
h̄2k2

m −E−2EF

= V
∫ h̄ωD

0
D(ε)

1
2ε−E

dε,

where 2ε = h̄2k2

m −2EF . Normally, h̄ωD� EF . Therefore, we can make the approximation that D(ε) = D(0), which
is the density of states at the Fermi energy.

1 = D(0)V
∫ h̄ωD

0

1
2ε−E

dε

= D(0)V
1
2

log(2ε−E)
∣∣∣∣h̄ωD

0

= D(0)V
1
2

log
(

2h̄ωD−E
−E

)
⇒ E−2h̄ωD

E
= e

2
D(0)V ,
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but we know that D(0)V � 1, that is, e
2

D(0)V � 1

⇒ − 2h̄ωD

E
= e

2
D(0)V .⇒ E =−2h̄ωDe−

2
D(0)V =−∆,

which is the expression for the energy gap at T = 0. As we can see that the energy gap depends on three parameter,
namely ωD, which indicates the strength of phonons, D(0) which indicates the number of electrons available for
binding, and V which indicates the strength of the interaction between two electrons or the Cooper paris. For the
expression for the temperature dependence of the energy gap, which we will not derive here, we have

∆(T )
∆(0)

= 1.74
[

1− T
TC

]1/2

,

where kTC = ∆(0)
1.764 . Similarly, we can derive the expression for the critical field and the specific heat as a function of

temperature from the microscopic theory. The results are

HC(T )
HC(0)

= 1−
(

T
TC

)2

,

for the critical field and
CS

γTC
= 1.34

(
∆(0)

T

)3/2

e−
∆(0)

T ,

for the specific heat. The jump in the specific heat at TC is equal to

CS−Cn

Cn

∣∣∣∣= 1.43,

where Cn is the specific heat of the normal state.

The BCS theory is very successful in describing physics of conventional superconductors. However, it fails to explain
superconductivity in the cuprates, high-TC superconductors with the copper oxide planes. One thing we know is that
the binding energy of the Cooper pair cannot come from phonons, since it would give rise to very low TC. However,
no one know exactly what mehanism give rise to T as high as 150 K. Currently, physicists around the world are
intensively looking for clues to explain high-TC superconductivity and many believe that its many secrets lie in the
magnetism, which we will study in the next chapter.

10.4 Josephson tunneling

In this section, we will consider the tunneling through a junction of a thin insulator. First, let us consider two pieces
of conductors separated by a thin layer of a insulator. Normally, the insulating layer will not allow a current through.
However, if the layer is thin enough (10−20 Å), then it is possible for electrons to go though the potential barrier, and
we call this phenomenon tunneling. The I−V curve for the junction with normal conductors is of the Ohmic type,
that is, for low voltage the current is linearly proportional to the applied voltage.

However, if on side of the junction is a normal metal while the other side is a superconductor, then at T → 0 there
will be no current until the voltage reaches some finite value, which is equal to ∆

2e where ∆ is the energy of the
superconducting gap. If T is small but not equal to zero, then there could be a small current leaking through the
junction. This small current is due to the thermally excited electrons, which no longer form Cooper paris. On the
normal conductor side, the electrical transport is due to single electrons, whereas on the superconducting side, the
transport is dominated by Cooper pairs, which is superconducting. Therefore, when electrons tunnel through the
junction from the superconducting side to the normal metal side the pairing has to be broken, which requires the
energy of ∆

2e per one electron; note that we have to divide by two since there are two electrons for one Cooper pair.
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Now, for the Josephson junction, the two sides of the junction are both superconductors which could be of the same
kind or of the different kinds. For simplicity, we will only consider the case where both sides are the same type of
the superconductor. Let us consider what we can expect if the two sides are both superconductors. In this case, the
Cooper pairs do not need to break into single electrons in order to conduct on the other side. And since the Cooper
pairs can tunnel through the junction if the junction is thin enough, there can be current through the junction even
without voltage across the junction. It turns out that there are two types of the Josephson effect:

1. DC Josephson effect: The direct current can occur without applied electric or magnetic field.

2. AC Josephson effect: When the dc voltage is applied across the junction, the r f current is induced. This
phenomenon is used to measure the value of h̄/e with high accuracy.

DC Josephson effect First, we will try to explain the DC Josephson effect. Let ψ1 and ψ2 be the probability
amplitudes of electron pairs on two sides of the junction, where 1 denotes the left hand side and 2 denotes the right
hand side. Now, let us consider the time-dependent Schrödinger equation:

ih̄
∂ψ

∂ t
= H ψ,

where H = h̄T is the tunneling operator through the insulating junction. Therefore, for ψ1 and ψ2, we obtain

ih̄
∂ψ1

∂ t
= h̄T ψ2

ih̄
∂ψ2

∂ t
= h̄T ψ1,

that is, the change in ψ1 (ψ2) is caused by the tunneling from ψ2 (ψ1). Note that the unit of T is frequency or we can
think of T as the rate of tunneling, and if T = 0, then there is no tunneling. It is a measure of how much ψ1 can ‘leak’
to ψ2 and vice versa. For the wave functions, we will let

ψ1 = n1/2
1 eiθ1

ψ2 = n1/2
2 eiθ2 ,

where n1 and n2 are the density of Cooper pairs on sides 1 and 2. Now we can substitute the wave functions into the
Schrödinger equation and obtain

∂ψ1

∂ t
=

1
2

n−1/2
1 eiθ1

∂n1

∂ t
+ iψ1

∂θ1

∂ t
=−iT ψ2

∂ψ2

∂ t
=

1
2

n−1/2
2 eiθ2

∂n2

∂ t
+ iψ2

∂θ2

∂ t
=−iT ψ1.

We multiply the first equation by n1/2
1 e−iθ1 and the second equation by n1/2

2 e−iθ1 .

1
2

∂n1

∂ t
+ in1

∂θ1

∂ t
= −iT (n1n2)

1/2 eiδ

1
2

∂n2

∂ t
+ in2

∂θ2

∂ t
= −iT (n1n2)

1/2 e−iδ ,
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where δ = θ2−θ1. We will solve this set of equations by equating the real part and the imaginary part.

∂n1

∂ t
= 2T (n1n2)

1/2 sinδ

∂n2

∂ t
= −2T (n1n2)

1/2 sinδ

∂θ1

∂ t
= −T

(
n2

n1

)1/2

cosδ

∂θ2

∂ t
= −T

(
n1

n2

)1/2

cosδ .

Since we assume that the superconductors on both side of the junction are of the same type, n1 must be approximately
the same as n2, that is, n1 ≈ n2.

⇒ ∂θ1

∂ t
≈ ∂θ2

∂ t
;

∂

∂ t
(θ2−θ1) = 0

and the current becomes
∂n2

∂ t
=−∂n1

∂ t
≡ J,

which is the current flow from one side of the junction to the other side. The expression for J is given by

J = 2T (n1n2)
1/2 sinδ ≡ J0 sinδ .

We can see that J is not zero as long as the phase difference δ is not zero, and that there can be current even though
there is no voltage across the junction.

AC Josephson effect Next we will apply a DC voltage across the junction. The electron pairs now have the potential
energy equal to qV =−2eV . This is the voltage difference across the junction, and we can think of it as the potential
on the left hand side (1) is equal to −eV and that on the right hand side (2) is equal to eV . Our Schrödinger equations,
hence, become

ih̄
∂ψ1

∂ t
= h̄ψ2− eV ψ1

ih̄
∂ψ2

∂ t
= h̄ψ1 + eV ψ2.

Most of our calculations will be similar to the first case except that now we have an additional term of the potential
energy. Substituting the wave function gives us

1
2

∂n1

∂ t
+ in1

∂θ1

∂ t
=

ieV n1

h̄
− iT (n1n2)

1/2 eiδ

1
2

∂n2

∂ t
+ in2

∂θ2

∂ t
= − ieV n2

h̄
− iT (n1n2)

1/2 e−iδ ,

The real and the imaginary parts can be written as

∂n1

∂ t
= 2T (n1n2)

1/2 sinδ

∂n2

∂ t
= −2T (n1n2)

1/2 sinδ

∂θ1

∂ t
=

eV
h̄
−T

(
n2

n1

)1/2

cosδ

∂θ2

∂ t
= −eV

h̄
−T

(
n1

n2

)1/2

cosδ .



Lecture 10: Superconductivity 10-9

As you can see the real part remains the same as in the first case, but the imaginary part now contains an extra term,
namely eV

h̄ . This term enables us to measure the ratio of e/h̄ to a very high degree of accuracy. Again, we will assume
that the two superconductors on both sides of the junction are the same, and hence n1 ≈ n2. Therefore,

∂

∂ t
(θ2−θ1) =

∂δ

∂ t
=−2eV

h̄

⇒ δ (t) = δ (0)− 2eV
h̄

t.

And the current becomes

J = J0 sin
[

δ (0)− 2eV
h̄

t
]
.

As you can see the current now oscillates as a function of time with an angular frequency ω = 2eV
h̄ since the phase

difference is now changing with time. By measuring this frequency, we can obtain the value of e
h̄ .

Macroscopic Quantum Interference Now we will try to make a device out of the Josephson junction by connecting
two junctions and make them into a loop. This device can be used to measure magnetization quite accurately. This
idea of this device starts from the quantization of magnetic flux, that is,

h̄c
∮

∇θ · d~l = q
∮
~A · d~l

h̄c ·2πn = q
∫

∇×~A ·d~σ = q
∫
~B ·d~σ = qΦ

⇒ Φ =
2π h̄c

q
n, (10.1)

where n is an integer. However, if the integral does not cover the whole loop then the phase difference becomes

θ2−θ1 =
qΦ

h̄c
=

2eΦ

h̄c
,

where |q| = 2e for the Cooper pair. Therefore, the total phase difference of each junction δa for the top loop and δb
for the bottom loop is given by

δb = δ0 +
e
h̄c

Φ and δa = δ0−
e

h̄c
Φ,

and the expression for the total current is given by

Jtotal = J0

[
sin
(

δ0 +
e

h̄c
Φ

)
+ sin

(
δ0−

e
h̄c

Φ

)]
= 2J0 sinδ0 cos

eΦ

h̄c
. (10.2)

Again, we can see that if we vary the magnetic flux Φ then the current changes between the maximum value of J0 to
the minimum value of −J0. By measuring this oscillation as we move the magnetic material through the device, we
can measure the magnetization of that material. The device that uses this principle to measure magnetization is called
SQUID, which stands for Superconducting QUantum Interfernce Device.
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