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In the previous chapter, we learned that crystals could form by minimizing the binding energy. After obtaining the
expression for the binding energy, we can then calculate the equilibrium separation and equilibrium energy. Near the
minimum point, we can expand the energy of the system using the power series:
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Since r0 is the equilibrium separation by construction, the second term is zero. Therefore, the r−dependent leading

term is the third term. We will let C = ∂ 2U
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(the elastic constant) and u = r− r0 is the displacement from the

equilibrium separation. We can then rewrite the above equation as:

∆U =U(r)−U0 =
1
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Cu2,

which is expression for the potential energy of the simple harmonic oscillators. Hence, we expect the atoms inside the
crystals to oscillate around its equilibrium separation. In this chapter, we will study this lattice vibration, which we
call phonons, and theirs contributions to the physical phenomena that we can measure.

4.1 Elastic waves in crystals

As we have seen in the introduction, the binding energy of atoms in the crystal can be expanded using a power
series and the non-zero leading term is a parabolic function in the displacement from the equilibrium position. The
implication of this term is the oscillating motion of the atoms which gives rise to the vibrational wave traveling through
the crystal, which we call phonons to emphasize their similar characteristics with the electromagnetic wave or photons.

4.1.1 Vibrational wave in monatomic crsytal

We will start off by considering the simplest case, that is, the harmonic oscillation in the lattice with one atom per a
unit cell. To further simplify our problem, we will consider the oscillation of N planes of atoms with respect to each
other and will let the ‘spring constant’ C between these planes be the same. The planes are a distance a apart. Now let
label one plane the sth plane, the plane to its left the (s+1)th plane, and the plane to its right the (s−1)th plane. We
will also assume that the lattice is very large and the effect of the boundary can be ignored. However, for simplicity
in the calculation, we will assume a periodic boundary condition, that is, the Nth plane is connected back to the 0th

plane. Letting u be the displacement from the equilibrium position na (n is an integer), we can write the equation of
motion of the nth plane as

M
∂ 2us

∂ t2 =−C [2us−us+1−us−1] (4.1)
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with the boundary condition
u(Na) = u(0).

For the time dependent part, we have
us(t) = u(sa)e−iωt .

Therefore, the left hand side of Eq. 4.1 becomes

M
∂ 2us

∂ t2 =−Mω
2us(t). (4.2)

And for the spatial dependent part, due to the periodicity of the crystal we have

u(sa) = u0eiKsa,

using Bloch Theorem that we will prove in Lecture 7. Therefore, the right hand side of Eq. 4.1 becomes

−C [2us(t)−us+1(t)−us−1(t)] = −Cu0e−iωt
[
2eiKsa− eiKa(s+1)− eiKa(s−1)

]
= −Cu0e−iωteiKsa [2− eiKa− e−iKa]
= −2Cus(t) [1− cos(Ka)] (4.3)

After combining Eqs.4.2 and 4.3, we obtain the dispersion relation that shows the expression of ω as a function of K
as
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From this equation, we can immediately see that the frequency of the lattice vibration can have a value between 0

and
√

4C
M and the whole range of frequency is contained inside the first Brillouin zone between K = −π

a and π

a .
Analogously, in three dimensional lattices, we can specify all phonon excitations in the first Brillouin zone. The
region near the zone edge corresponds to the short-distance interaction (short-wavelength limit) while the region near
the origin corresponds to the long distance interaction (long-wavelength limit).

We can calculate the group velocity vg of this vibrational wave of the lattice using vg =
dω

dK , which we obtain
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)
.

We can see that vg goes to zero as K approaches the zone boundary. We can think of this phenomenon as standing
wave at the zone edge. This situation is similar to the condition for the Bragg peak. When the condition for the Bragg
diffraction is met, the wave cannot transverse through the sample, that is, the vibrations wave or phonons cannot travel
through the sample; hence the wave velocity is zero.

On the other hand near the origin or for the continuum limit, where λ � a, that is, Ka� 1, we have

sin
(

Ka
2

)
' 1

2
Ka



Lecture 4: Elastic constants and phonons 4-3

Therefore, for the small K the dispersion relation becomes

ω = a

√
C
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K ≡ vK,

and the group velocity becomes

vg = v = a

√
C
M
.

This is in fact the velocity of sound since sound propagates through solid by means of lattice vibration.

Determination of the spring constant from experiment In our calculations, we have only included the nearest-
neighbor interaction but in fact in some crystals such as in metals the attractive force due to the delocalization of
electrons that holds atoms together are quite long-range. In some case, it has been experimentally shown that the
interactions can be as long as 20 lattice constants. Therefore, we have to modify the dispersion relation to include the
long-range nature of the interaction. For p nearest planes, the dispersion relation becomes

ω
2 =

2
M ∑

p>0
Cp (1− cos(pKa)) .

We then can solve for Cp by multiplying both sides by cos(rKa) and integrating over the Brillouin zone:
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Once we know the dispersion relation ωK from an experiment, we can calculate the spring constant at range ra using
this fromula.

In the three-dimensional lattice, we have three vibrational modes of the lattice.

• One longitudinal mode: In this mode, the vibration is along the traveling direction of the wave.

• Two transverse modes: For these modes, the vibration is perpendicular to the direction of the traveling wave.

We note that the dispersion and wave velocity of these three modes can be different due to the difference in the elastic
constant C along those directions.

4.1.2 Vibrational wave in the diatomic crystal

In this section, we will use the same mathematical method to calculate the dispersion relation of the vibrational wave
or phonons in the crystal where a basis has two atoms or the diatomic crystal.

We will again consider the vibration of lattice planes in one dimension. However, now we have two types of lattices
planes, which we will called A and B, consisted of different patterns of atoms. Since the plane separation between
lattice planes could be different, we have two displacement variables us and vs for the sth plane of the first kind of
lattice planes A and the sth plane of the second kind of lattice planes B, respectively. us and vs are defined to be a
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distance from the equilibrium position. For simplicity, we will assume that the spring constants are all the same. In
reality, the spring constants between two adjacent planes to the left and the right can be different.

We can again write down a set of the equations of motion for us and vs as the following:

MB
d2us

dt2 = −C [2us− vs− vs−1]

MA
d2vs

dt2 = −C [2vs−us−us+1] ,

where MA and MB are the masses of lattices of types A and B, respectively. The solution for these equations are similar
to the solution to the monatomic crystal, that is,

us(t) = u0e−iωteiKsa

and
vs(t) = v0e−iωteiKsa.

We can substitute these solutions back to the equations of motion to obtain:

−ω
2MBu0 = Cv0

(
1+ e−iKa)−2Cu0

−ω
2MAv0 = Cu0

(
1+ eiKa)−2Cv0 (4.4)

In order to solve this set of equations, we will rewrite them in a matrix form.[
2C−ω2MB −C

(
1+ e−iKa

)
−C
(
1+ eiKa

)
2C−ω2MA

][
u0
v0

]
= 0.

We will then define the matrix M to be

M =

[
2C−ω2MB −C

(
1+ e−iKa

)
−C
(
1+ eiKa

)
2C−ω2MA

]
.

From your linear algebra class, you might have learned that the set of equations 4.4 can be solved by finding the
determinant of M and setting it to zero, that is, detM = 0, from which we will get

ω
4MAMB−2ω

2C (MB +MA)+2C2 (1− cos(Ka)) = 0.

We can rewrite the last term 2C2 (1− cos(Ka)) = 4C2 sin2 Ka
2 . The above equation is a quadratic equation and can be

solved readily:
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We can rewrite this equation using a reduced mass

1
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⇒ µ =
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and let M = MA +MB. With these substitutions, we obtain

ω
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From this expression, we can see right away that there are two solutions corresponding to the ± sign in front of the
second term. This means, there are two branches of the dispersion relation for each value of K.
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Again, let us first consider the case of the continuum limit or the long wavelength limit, that is, Ka� 1. We can
approximate sin2 Ka

2 ≈
(Ka

2

)2. Therefor, the expression for ω2 becomes
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The phonon excitations in the case of the negative sign is the same as those in the case of monatomic crystal, that is,
it goes to zero as K goes to zero and for small K, ω is linearly proportional to K. We will call this mode the acoustic
mode. This mode is due to the relative motion between atoms in different unit cells just like in the monatomic case.
In the case of positive sign, as K goes to zero, the energy of this branch instead goes to a finite value. If the value of
Ca2

M is small, this mode becomes relative flat (weakly dispersive) compared to the acoustic mode. We call this mode
the optical mode. It is due to the relative motion between atoms in the same unit cell.

In the other limit, if K obtains its maximum value possible. That is, if K = π , then sin2 π

2 = 1. The expression for ω
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But we have
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Therefore, we can rewrite the equation for ω in terms of MA and MB as

ω
2 =C

MA +MB

MAMB
±C

∣∣∣∣MA−MB

MAMB

∣∣∣∣ .
⇒ ω

2(K) =


2C
MA

for +

2C
MB

for -

This expression indicates the energy of phonons at the zone edge. We can see that if MA 6= MB, then there is a energy
gap of phonons at the zone edge, where no ω is allowed.

Similar to the acoustic mode, the optical mode also has three modes or three polarizations, two transverse modes
and one longitudinal mode. For the transverse modes, the difference between the transverse acoustic mode (TA)
and transverse optical mode (TO) is that the atoms in TA form a single wave while those in TO form node-antinode
configuration. For the TO mode at K = 0, the displacement u and v will have a ratio:

u
v
=−MA

MB
,

which means the two types of atoms will vibrate out-of-phase with each other due to the minus sign. It turns out that
if the two types of atoms happen to carry charges, then this mode of vibration can be excited using light. That is the
reason why this mode is called the optical mode.

On the other hand, for the acoustic mode at K = 0, ω2 is also equal to zero. Therefore, from Eq.4.4, we have

2Cu−2Cv = 0
u = v,
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which means the atoms in Planes A and B will move together and their vibration motion with respect to other sets of
Planes A and B in different unit cells give rise to the acoustic phonons.

For the p-atom crystal in d dimensional space, there are pd normal modes of phonons. In three-dimensional space,
each branch has three polarizations; one longitudinal and two transverse. There can only be one acoustic branch,
which means that there can only be three acoustic modes. The rest of the normal modes, which is equal to 3(p−1),
are the optical mode, out of which p−1 modes are optical longitudinal and 2(p−1) are optical transverse.

Phonon momentum We will think of phonons as if it carries the momentum of h̄~K, which is sometimes called
crystal momentum. We have learned in the previous chapter when we talked about the diffraction (elastic scattering)
that the change in the wave vectors~k of the incident beam and~k′ of the scattered beam is equal to the reciprocal lattice
vector ~G, which represent the momentum of the lattice. In this case, ~G represents the crystal momentum as the whole
crystal or its center mass moves due to the recoil. However, this change in momentum is quite small and we do not
actually observe the recoil motion.

In order to measure phonons, we will need to perform an inelastic scattering, which means there is a transfer of energy
to the crystal and hence both direction and magnitude of the wave momentum have to change. We can think of the
inelastic scattering as two processes. In the first process, a phonon is created and the equation for the momentum
transfer is

~k′+~K =~k+ ~G.

In the second process, a phonon is destroyed or created; the equation of the momentum transfer becomes

~k′ =~k+~K + ~G.

Since we can also measure the energy transfer of the scattering process, we can obtain the dispersion relation of
phonons. To measure the dispersion relation of phonons, we can use x-ray or neutron beams since both light and
neutrons can excite the vibration mode of the crystal.

For neutron scattering, the conservation of energy and momentum gives the following equation for the energy and
momentum transfers:

~k′±~K =~k+ ~G

h̄2k2

2mn
=

h̄2k′2

2mn
± h̄ω,

where mn is the neutron mass, the± sign indicates whether a phonon is created or destroyed, and h̄ω is the the phonon
energy.
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