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In this chapter, we will try to explain thermal properties that are due to lattice vibrations or phonons. In order to archive
this task, we will have to first consider the energy of lattice vibration. Classically, this energy is proportional to the
amplitude squared, which implies that its energy can be any value. You have proved this relation in the homework.
However, similar to photons, phonons are quantum-mechanical particles and its energy is quantized. In the previous
chapter, we have learned that we can model the crystal as atoms connected by springs. Therefore, the Hamiltonian
for this system is the same as that of the simple harmonic oscillators, to which we know the answer. Quantum
mechanically, the energy of phonons with the frequency ω is equal to:

En = h̄ω~K,σ

(
n+

1
2

)
,

where ω~K,σ is the normal mode frequency of phonons and σ indicates phonon modes. The total energy is equal to
∑~K,σ 〈n~K,σ 〉 h̄ω~K,σ , where 〈n~K,σ 〉 is the Planck distribution function indicating how many phonons of a particular
energy there are at a given temperature. The statistics used to derive this expression is the Boson statistics, which is
the same as in the case of photons. We will use this knowledge of phonon energy to study the thermal properties of
solids.

5.1 Phonon heat capacity

The first thermal quantity that we will study is the heat capacity, which is defined as

CV =
∂U
∂T

∣∣∣∣
V
,

where the subscript V implies the heat capacity at constant volume, which is theoretically more fundamental than the
heat capacity at constant pressure CP even though the latter is experimentally measured. The difference between them
are quite small at a finite temperature and goes to zero as temperature approaches zero.

We will here only consider the heat capacity that is due to phonons, which we sometimes call the lattice heat capacity
to differentiate it from the electronic heat capacity which is due to electrons. We will come back to the electronic
heat capacity later in the course.

First, we have to calculate the total energy of phonons for a single branch (acoustics or optical), which is equal to

U = ∑
~K

∑
p

〈
n~K,p

〉
h̄ω~K,p, (5.1)

where ∑p denotes the sum over the phonon polarizations and
〈

n~K,p

〉
is the Planck distribution function, which is equal

to 〈
n~K,p

〉
=

1
eβ h̄ω −1

,
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where β = 1
kT , where k (or kB) is the Boltzmann constant, and the 〈...〉 denotes the thermal average. Knowing

〈
n~K,p

〉
,

we can rewrite Eq. 5.1 as

U = ∑
~K

∑
p

h̄ω~K,p

eβ h̄ω −1
. (5.2)

Since we will consider a very large system, that is, the number of particles or atoms in the system is close to infinity,
we can treat ~K as a continuous variable. Therefore, we will replace ∑~K with the integral over ~K. Then, we also have to
know the density of the modes Dp(~K) or Dp(ω), that is, the number of states for a given value of ~K or ω . This density
of states can be calculated from the dispersion relation.

Density of states in three dimensions We will start by first considering the simple case of one dimensional lattice.
Let us consider the one-dimensional lattice of N +1 atoms with the separation distance between the nearest neighbors
a and hence the total is L = Na. We will assume that the boundary condition of this system is periodic, that is,
us(sa) = us(sa+L) where us(sa) ∝ sinKsa. One could think of this system as a circular lattice that closes on itself so
that the two ends of the lattice are connected. This boundary condition can only be satisfied if

K = 0, ± 2π

L
, ± 4π

L
, ± 6π

L
, ...,±Nπ

L
.

In fact, the number of ~K is equal to the number of atoms in the lattice that are allowed to move. Note that the two
atoms at the two ends are the same atom that is located at the origin. We can immediately see that ∆K = 2π

L . This
means that in the interval 2π

L there can only be one state or one ~K value. The density of state in this case is, therefore,
one per 2π

L or L
2π

.

Similarly, in the two- or three dimensional space, we can apply the periodic boundary condition and found that ∆K =
2π

L along two or three orthogonal directions, respectively. Therefore, there can only be one state in the area (in the

reciprocal space) of
4π2

L2 =
4π2

A
in two dimensions and in the volume of

8π3

L3 =
8π3

V
in three dimensions, and hence

the densities are equal to
A

4π2 and
V

8π3 in 2D and 3D, respectively. For N states in three dimensions, we find that

N =
V

8π3 ·
4
3

πK3,

where K denotes the radius of a sphere in the reciprocal space. Therefore, the density of states in three dimensions in
terms of ω is

D(ω) =
dN
dω

=
V

8π3 ·4πK2 dK
dω

.

In order to calculate dK
dω

, we need to the dispersion relation ω(K). This expression is for one polarization of phonons.
Since in three dimensions each branch has three polarizations, we have to multiply three to the equation, which gives

D(ω) = 3 · V K2

2π2
dK
dω

.

Debye Model for Density of States The Debye model is used to approximate the heat capacity at small temperature,
at which only low-energy phonons are excited. From the dispersion relation of phonons, we can see that the Debye
approximation focusses on the acoustic branch at small ~K where the dispersion relation is linear, that is,

ω = vK ⇒ dω

dK
= v,
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where v is the sound velocity. Therefore, the density of states in terms of ω becomes

D(ω) =
3V
2π2

ω2

v3 .

This function is monotonically increasing and goes to infinity as ω becomes large. However, in the real system, we
know that the number of modes is equal to 3N, where N is a number of atoms, which is finite. Therefore, there must
be a cut-off frequency to prevent D(ω) from becoming too large. This constraint can be expressed by the following
equation: ∫

∞

0
D(ω)dω =

3V
2π2v3

∫
ωD

0
ω

2dω = 3N

⇒ V
2π2v3 ω

3
D = 3N

⇒ ωD = v
(

6π
2 N

V

)1/3

= v
(
6π

2n
)1/3

,

where n≡ N
V is the density.

Now we are ready to calculate the total of energy of phonons. Therefore, for the Debye approximation we have

U =
∫

ωD

0
h̄ω D(ω) 〈n(ω)〉 dω

=
3V h̄

2π2v3

∫
ωD

0

ω3 dω

eh̄ω/kT −1
.

We then take the derivative of this equation with respect to temperature while keep V fixed to obtain the heat capacity
at constant volume.

CV =
3V h̄

2π2v3

∫
ωD

0

ω3 dω(
eh̄ω/kT −1

)2 · e
h̄ω/kT · h̄ω

kT 2 .

Let x = h̄ω

kT and rewrite the equation for CV as

CV =
3V h̄2

2π2v3 ·
1

kT 2 ·
(

kT
h̄

)5 ∫ xD

0

ex x4 dx

(ex−1)2 .

=
3V k

2π2v3

(
kT
h̄

)3 ∫ xD

0

ex x4 dx

(ex−1)2 . (5.3)

First, we can consider this expression in the low-temperature limit where T → 0, which means x→ ∞. Therefore, the
integral becomes ∫

∞

0

ex x4 dx

(ex−1)2 =
4π4

15
.

The expression for CV becomes

CV =
3V k

2π2v3

(
kT
h̄

)3

· 4π4

15
=

2π2V k
5v3

(
kT
h̄

)3

We will write this expression in terms of the Debye temperature θ , which is defined as

h̄ωD = h̄v
(
6π

2n
)1/3

= kθ

⇒ θ
3 =

(
h̄
k

)3

·6π
2v3 N

V

⇒ CV =
12π4

5
Nk
(

T
θ

)3

(5.4)
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This expression for CV shows that at low temperature the heat capacity is proportional to T 3, which is in agreement
with the experiment.

We could understand this T 3 dependence in a more physical way. First, we have to realize that not all phonon modes
are excited at a given temperature and only those with energy h̄ω < kT will be excited. That means, the fraction of
the three dimensional K-space with phonons that can be excited is proportional to (ω/ωD)

3 = (T/θ)3. Note that if
T is equal to the Debye temperature θ , then all phonon modes will be excited. Since the total number of phonons is
3N and each phonon has energy of kT , the total energy is approximately equal to 3N · (T/θ)3 ·kT . Therefore, the heat
capacity is equal to 12Nk(T/θ)3, which is the same order as what we calculate above. In the real system, in order to
observe this T 3 dependence, we have to go to much lower temperature than the Debye temperature; T < θ/50.

Now, we will consider the limit where temperature is large, that is, T → ∞ or xD � 1. That means, ex ≈ 1 and
ex−1≈ x. Therefore, the integral in Eq. 5.3 becomes∫ xD

0

ex x4 dx

(ex−1)2 ≈
∫ xD

0

x4

x2 dx =
x3

D
3
.

And, the heat capacity becomes

CV =
3V k

2π2v3

(
kT
h̄

)3 x3
D
3

=
3V k

2π2v3

(
kT
h̄

)3 1
3

(
h̄ωD

kT

)3

=
V k

2π2v3 ·6π
2v3 · N

V
= 3kN.

This value is known as the Dulong and Petit value and it is the heat capacity at the high-temperature limit where all
3N phonons mode are excited with each mode having energy of kT .

Einstein Model for the Density of States There is another model for the density of states of phonons. In this model,
we will again start with N simple harmonic oscillators in the three-dimensional lattice. However, now we will assume
that all of these N oscillators have the same vibrational frequency ω0. Therefore, the density of states in this case is
the δ−function D(ω) = 3Nδ (ω−ω0), where 3N is the total number of modes in three dimensions.

We can plug in this expression back the our equation for the total energy and obtain

U =
∫

ωD

0
h̄ω 3Nδ (ω−ω0) 〈n(ω)〉 dω

= 3N〈n(ω0)〉h̄ω0

= 3N
h̄ω0

eh̄ω0/kT −1
. (5.5)

Therefore, the heat capacity is equal to

CV =
∂U
∂T

∣∣∣∣
V
= 3Nk

(
h̄ω0

kT

)2 eh̄ω0/kT(
eh̄ω0/kT −1

)2

Einstein first came up with this expression to describe the heat capacity in a solid. This model does not agree with
the experiment at low temperature, which show the T 3 dependence as aforementioned. However, it can describe the
heat capacity of a solid quite well in the intermediate temperature range. Furthermore, as T → ∞ this expression for
CV goes to 3N in agreement with the experiment at high temperature. This fact implies that this model corresponds
to high energy phonons, whose dispersion is quite flat, which is the characteristic of optical phonons. Therefore, the
Einstein model is applied to the optical mode in the phonon dispersion relation.

For the low temperature limit (T → 0) or eh̄ω/kT � 1, we have

CV ≈ 3Nk
(

h̄ω0

kT

)2

· e−h̄ω0/kT .
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which exponentially goes to zero, faster than the T 3 dependence.

On the other hand, in the high temperature limit T → ∞ which mean eh̄ω/kT ≈ 1+ h̄ω0/kT , we have

CV ≈ 3Nk
(

h̄ω0

kT

)2

· 1

(h̄ω0/kT )2 = 3Nk.

which is the Dulong and Petit value as we expect.

5.2 Effects of Anharmonic Terms

So far, we have done the calculations on the assumptions that

1. the displacement from the equilibrium separation is small, that is, the amplitude of the oscillations is small.

2. the higher-order terms in the expansion of binding energy is ignored, that is, we assume that the oscillations is
purely harmonic.

However, in the real system the displacement does not necessarily small and the higher-order term could contribute
significantly to the properties of solid. In fact, there are properties that cannot be explained based only the harmonic
approximation and the anharmonic terms (which proportional to u3 and u4) are required. For example,

• Phonon-phonon interaction

• Thermal expansion which linearly proportional to T

• Saturated heat capacity at high temperature smaller than the Dulong and Petit value

• Finite thermal conductivity (harmonic model gives an infinite thermal conductivity for a perfect crystal)

We will not try to explain all these phenomena using the anharmonic model. In stead, we will pick only two phenom-
ena, the thermal expansion and thermal conductivity.

Thermal expansion In order to include the anharmonic terms, we will have to rewrite the expansion of binding
energy and keep higher-order terms. Assuming that the equilibrium position is at x = 0, we can write the series
expansion as

U(x) = cx2−gx3− f x4,

where c, g, and f are all positive. g denotes the asymmetric mutual repulsion between atoms and f denotes the
softening of the vibration; hence the negative sign.

The thermal expansion is proportional to the change of the equilibrium separation or average separation as a function
of temperature. As we might have already known that in the harmonic approximation (with only the quadratic term
in the expansion) the average separation remains constant as a function of temperature. We can easily prove this by
calculating the average separation 〈x〉.

〈x〉=
∫

∞

−∞
dx x e−βcx2∫

∞

−∞
dx e−βcx2 .

However, as you might want to verify for yourself that
∫

∞

−∞
dx x e−βcx2

= 0, since xe−βcx2
is an odd function. Therefore,

for the harmonic approximation 〈x〉= 0 and hence the thermal expansion cannot occur.
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Now, if we include the x3 and x4 term, we will have

〈x〉=
∫

∞

−∞
dx x e−βU∫

∞

−∞
dx e−βU .

Now, we will again assume that x is small, that is, we can rewrite e−βU as

e−β(cx2−gx3− f x4) = e−βcx2
e−β(−gx3− f x4) ≈ e−βcx2

[1+β (gx3 + f x4 )] .

We then have ∫
∞

−∞

dx x e−βU =
∫

∞

−∞

dx e−βcx2
[
x+βgx4 +β f x5

]
=

3π1/2

4
g

c5/2 β
−3/2.

Note that the x and x5 terms are odd, so they vanish after the integration and only the second term contributes to the
integral. For the denominator, we have

∫
∞

−∞

dx e−βU =
∫

∞

−∞

dx e−βcx2
=

(
π

βc

)1/2

.

Therefore, the average separation becomes

〈x〉= 3g
4c3 kT,

which is linear proportional to T .

Thermal conductivity There are two processes that determine the thermal conductivity. The first process is the
scattering of phonons by other phonons and the second process is the scattering of phonons by imperfections in the
crystal lattice. The more often the scattering of phonons, the less the thermal conductivity. The anharmonic term will
play a role in the phonon-phonon scattering process, which will lower the thermal conductivity of the perfect crystal.
In fact, for the perfect crystal if there is no the anharmonic terms the thermal conductivity would go to infinity, which
is in contrast with the experimental result since the thermal conductivity is always finite.

It turns out that the thermal conductivity is proportional to the temperature gradient and mean free path of phonons.
The mean free path is large if there is less scattering with other phonons and imperfections. Since the number of
phonons depends on temperature. The higher the temperature, the more the phonons. We would expect that as the
temperature decreases, the number of phonons also decreases, and hence the mean free path should become larger. In
fact, the mean free path l is inversely proportional to T , that is, l ∝

1
T . We will not go into detail on how to derive this

relation here.

In order to derive the thermal conductivity, we will consider the heat flux that is transferred between regions with
different temperature, where there is temperature gradient. The net flux of heat energy jU can be written as

jU =−1
3

n〈v〉c∆T,

where n is the density of molecules, v is the phonon velocity, c is the specific heat or heat capacity per molecule, the 1
3

factor represents the average among three orthogonal directions in three dimensions, and the minus sign denotes that
the direction of the energy flux that is opposite to ∆T , from the high-temperature to low-temperature regions. We can
write ∆T as

∆T = l
dT
dx

,

where l is the mean free path of phonons. Therefore, we obtain

jU =−1
3

ncvl
dT
dx

=−1
3

Cvl
dT
dx

,
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where C = nc is the heat capacity per unit volume and we have omitted 〈...〉 for v. Using the definition of the thermal
conductivity

jU =−K
dT
dx

,

where K is the conductivity, we arrive at the final expression for K

K =
1
3

Cvl.

We can write l as l = vτ , where τ is the mean free time, that is, time between the collisions and rewrite the expression
for K as

K =
1
3

Cv2
τ.

In a crystal, there are two processes of phonon collisions that give rise to the thermal resistivity.

1. Normal Process In the normal process, the change of momentum of phonons after the collision is small and
the momentum after the collision stays within the first Brillouin zone. There is no loss of phonon energy in this
process and the thermal resistivity is zero. The normal process dominates at low temperature where the number
of phonons and their energies are low.

2. Umklapp Process In the umklapp process, the change of the momentum after the collision is large and the final
momentum of phonons is outside the first Brillouin zone, which can be mapped back to the zone. Therefore,
the phonons lose energy in the collision giving rise to the non-zero thermal resistivity. The umklapp process
dominates at high temperature where there are a lot of high energy phonons.

Although at low temperature the thermal resistivity is dominated by the normal process, the experiment shows that the
thermal resistivity indeed does not vanish. This is because even at very low temperature, the umplapp can occur and
degrade the thermal current.
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