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In this chapter, we will consider the properties of metals. The majority of elements in the periodic table or roughly
two thirds forms metals. Therefore, metals are considered one of the most important groups of materials. Some of the
basic physical properties of metals are:

1. Ability to conduct heat

2. Excellent electrical conductor

3. Ductile and malleable

4. Shiny surface

In this class, we will only study some of the key properties of metal such as thermal and electrical conductivity. We
will start with the electrical conductivity

6.1 The Drude Theory of Metals

The most basic model used to described the electrical conductivity in metal was proposed by Paul Drude in 1900
and hence named “the Drude model”. The model is based on the same assumption as the kinetic theory of gasses,
which is successfully used to described properties of gases. In this case, we will think of electrons as non-interacting
molecules of gas. Similar to the ideal gas, we will assume that electrons travels in a straight line until it collides with
impurity in the lattice or nuclei. Furthermore, the collision time is much shorter than the time between the successive
collisions and there is no other interaction acted on the electrons besides the collision. We can see right away that these
assumptions is the same as in the case of the diluted ideal gas. One different is that we ignore the electron-electron
collision whereas in the ideal gas the collision occurs among the molecules of the gas. The question is why we can
ignore the electron-electron interaction.

From experiments, we found that electrons mostly collide with impurities or defects but rarely with nuclei or other
electrons due to the following reasons:

1. Electrons rarely collide with nuclei because of the periodic arrangement of atoms in the lattice. Quantum
mechanically, electrons can be described by a wave function. We can think of this wave as a standing wave
inside the lattice. The electrons are mostly likely found around the nucleus. However, they will not collide with
the nuclei.

2. Electron will not collide with other electrons because of the Pauli exclusion principle, which states that since
electrons are fermion, any two electrons cannot be in the same quantum state. Being in different states reduces
the chance of the collision between electrons.
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Therefore, the most important effect that influences the electrically transport in metals is the collision of electrons
and impurities. We can then expect that for a perfect crystal without defects the mean free path of electrons, which
indicates the average distance electrons travel without a collision, can be very large. In some case, it can be as large as
108 of the interatomic distance or about 1 cm.

When Drude came up with the model in 1900, electrons were discovered by J. J. Thomson a few years earlier in
1897. However, the structure of atoms was then unknown. The Drude model is based on the assumption that atoms
are consisted of positive and negative charge and the electrical conductivity is due to the motion of electrons while
positive charge of protons are fixed in the middle of the nucleus. Furthermore, there are two types of electrons. The
first type is the core electrons that bind to the positively-charged nucleus and the second type is the valence electrons
that locate at the most outer part of atoms. When forming a matter, each atom shares the valence electrons that can
move around the lattice and are responsible for the electrically conductivity. We call the shared valence electron the
conduction electrons. They also form metallic bonding between atoms in metals.

After having the picture of atoms in the crystal, Drude applied the kinetic theory of gas to explain the conductivity of
the metal. As mentioned before, the kinetic theory of gas is applicable in the case where the gas is dilute. In metals
the electron density is normally more than 1,000 time bigger than the gas density. Therefore, one would expect that
the kinetic theory of gas should not be applicable for electrons in the metals. However, due to the Pauli exclusion
principle and the wave property of electrons, the mean free path of electron is large enough that the kinetic theory of
gas can be applied.

Assumptions of the Drude Model

1. Similar to the ideal gas, we assume that in the absence of the external electric field electrons travel in a straight
line until they collide with impurities or defects and nuclei and there is no other force acting on the electrons.

On the other hand, in the presence of the external electric field electrons will move according to the Newton’s
laws and we can ignore the forces between electron-electron and electron-nucleus. The assumption that there
is no electron-electron interaction is called independent electron approximation whereas the assumption that
there is no electron-nucleus interaction is called free-electron approximation.

We found that the independent electron approximation works very well in most cases, but the free electron
approximation fails to capture many fundamental properties of the metal such as band structure, which is due to
the periodic arrangement of the nuclei. Therefore, we sometimes call the Drude model the free electron model.

2. Electrons will not collide with other electrons but will collide with impurities or nuclei. Furthermore, the electric
conductivity will not depend on the detailed process of the collision.

3. We will suppose that the average time between two successive collisions is equal to τ , which we call the mean
free time. That is, on average each electron moves in a straight line for the duration equal to τ . We will further
assume that τ does not depend on the position and velocity of electrons.

4. Electrons are in thermal equilibrium with the surrounding or the lattice since electrons exchange energy with the
lattice through the collisions with the nuclei. Therefore, the velocity of electrons after collisions only depend
on the local temperature at the region where the collisions occur and is independent of the velocity before the
collisions.

We will use these assumptions to describe some key properties of metals. The first properties we will consider is the
DC electrical conductivity.

DC electrical conductivity of metals We will derive Ohm’s law V = IR where R is the resistance using the Drude
model. We will start with the definition of resistivity ρ .

~E = ρ~j
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where ~E is an electric field and ~j is a current density or an amount of charge per unit area per unit time. For a uniform
current, we have

j =
I
A

V = El,

(6.1)

where A and l is the cross-section area and the length through which the current travel. Combining the above two
equations, we obtain the Ohm’s law:

V =
ρl
A

I.

⇒ R =
ρl
A

We will now calculate ρ assuming that the motion of electrons can be described according to the Drude model.
Suppose that the density of moving electrons n and all move with the velocity~v. We can then calculate ~j:

~j =
−en ·A ·dt · v

A ·dt
=−nev,

where we can think of v as the average velocity of electrons. If the external electric field is absent (E = 0), v is equal to
zero, that is, the collision gives a random distribution of the velocity. However if E 6= 0, v of electrons will be non-zero
with the direction opposite to the direction of E.

Suppose that v0 is the velocity of an electron right after the collision. v0 is then randomly distribution and its average
value is zero. Now if there is an external electric field, the electric field will increase the velocity of the electron
according to the Newton’s law. The increase of the average velocity is equal to

vavg =−
eEτ

m
,

where τ is the mean free time as mentioned before. This implies that

j =
(

ne2τ

m

)
E ≡ σE.

Therefore, the conductivity and the resistivity are equal to

⇒ σ =
1
ρ
=

ne2τ

m
.

Normally, we can measure the resistivity or conductivity from an experiment, from which we can extract the value of
the mean free time and the mean free path. For example, if ρ ≈ 10−6 Ω·m at the room temperature, τ ≈ 10−14−10−15

sec. And the mean free path can be calculated from l = vτ , where v is the average velocity. We can estimate v from
the temperature of the electron “gas” using the equipartition of energy.

1
2

mv2 =
3
2

kBT.

At the room temperature T = 300 K, v ≈ 107 cm/sec, which mean l ≈ 1− 10 Å. We can see that the value of l is
roughly a typical distance between atoms in the lattice. Therefore, we can expect that at room temperature electrons
will collide with almost all nuclei in their path, which is not totally wrong. However, an experiment also indicates that
the mean free path at low temperature can become very long, in an order of 1 cm. How can we explain this temperature
dependence of l? It turns out that the current model is not sufficient since τ is temperature independent and v decreases
as temperature decreases, which is opposite to what we expect. This failure of the current model is one indication that
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at very low temperature electrons rarely collide with nuclei and the resistivity is dominated by the electron collision
with the impurities or defects.

In order to improve on the model, we will now let the force equation be time dependent, that is,

d~p
dt

= ~f (t),

and
~j =
−ne~p(t)

m
.

We need to calculate the momentum at time t + dt or ~p(t + dt) given that there is no collision between time t and
t +dt. However, we know that some electrons will collide with nuclei during that time and the probability of collision
to occur is dt

τ
, where τ is the mean free time, that is, on average there is one collision during time τ . Therefore, the

probability of having no collision is 1− dt
τ

and we can write ~p(t +dt) as

~p(t +dt) =

(
1− dt

τ

)[
~p(t)+~f (t)dt

]
= ~p(t)− ~p(t)dt

τ
+~f (t)dt,

⇒ ~p(t +dt)−~p(t)
dt

= ~f (t)− ~p(t)
τ

. (6.2)

where the dt2 term is ignored. Now if we take the limit where dt→ 0, we obtain

d~p(t)
dt

= ~f (t)− ~p(t)
τ

,

or (
d
dt

+
1
τ

)
~p(dt) = ~f (t),

In the section, we will apply this formula to study the Hall effect and the transport properties in magnetic field.

6.2 Hall effect and magnetoresistance

In the presence of magnetic field, the moving change will be deflected by the field. The Hall effect is the phenomenon
which charge particles gather on one side of a planar conductor creating the electric potential difference and electric
field across two sides of the conductor. The direction of this electric field is perpendicular to the direction of the current
or of the moving electrons.

In the Hall effect, there are two quantities which we can measure. The first quantity is the ratio between the applied
electric field Ex and the density current jx along the same direction. This ratio is called magnetoresistance:

ρ(H) =
Ex

jx
,

which is field-dependent. The second quantity is the ratio between the electric field across the conductor Ey in the
perpendicular direction with the current and the product of the current density jx and the magnetic field H. This
quantity is called Hall coefficient.

RH =
Ey

jxH
.
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Note that if Ey can be either positive or negative depending on the direction of the electric field. Therefore, RH can
also be either positive or negative and the sign of RH points to the type of the charge carrier. If RH > 0, then the charge
carrier is positively charged. On the other hand, if RH < 0, then the charge carrier is negatively charged.

We will now calculated the magnetoresistance and the Hall coefficient. Consider a slap of conductor with the perpen-
dicular magnetic field. Since there are both magnetic and electric fields, the Lorentz force can be written as

f = −e
(
~E +~v× ~H

)
Using the equation from the Drude model, we obtain

⇒ d~p
dt

=−e
(
~E +

~p
m
× ~H

)
− ~p

τ

We will only consider the steady state where ~p does not change with time, that is, d~p
dt = 0. We can write two equations

for px and py:

px : 0 = −eEx−
eH
m

py−
px

τ

py : 0 = −eEy +
eH
m

px−
py

τ

Let ωc =
eH
m , which is the cyclotron frequency. We can rewrite the above equations as

px : eEx = −ωc py−
px

τ

ne2τ

m
Ex = −neτ

m
ωc py−

neτ

m
· px

τ

σ0Ex = ωcτ jy + jx.

In the second step, we multiple both sides of the equation by
neτ

m
, and in the third step, we use the expressions for the

conductivity σ0 =
ne2τ

m
and for the current ji =−

nepi

m
where i = x,y.

Similarly for py, we have
σ0Ey =−ωcτ jx + jy.

In the steady state, jy is zero. The Hal coefficient can be calculated by letting jy = 0, that is, there is no current along
ŷ.

⇒ Ey = −
(

ωcτ

σ0

)
jx =−

(
H
ne

)
jx

⇒ RH = − 1
ne

,

where n is the density of charge carrier. The negative sign indicates that the charge carrier is a negatively-charged
electron. Along the x−axis, we can calculate the magnetoresistance

ρ0 =
Ex

jx
,

or the magnetoconductivity

σ0 =
jx
Ex

.
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AC electrical conductivity of a metal In this case, the applied electric field is oscillating with time and can be
described by the following equation

~E(t) = Re
[
~E(ω)e−iωt

]
.

In the steady state, the momentum of electrons can be described by

~p(t) = Re
[
~p(ω)e−iωt] .

From the equation of motion of the Drude model, we have

d~p
dt

= −~p
τ
− e~E

−iω~p(ω) = −~p(ω)

τ
− e~E(ω)

⇒ ~p(ω) =
−e~E(ω)

1
τ
− iω

(6.3)

Knowing ~p, we can now calculate ~j. Assume that ~j is oscillating with the same frequency as the electric field and
momentum.

~j(t) = Re
[
~j(ω)e−iωt

]
⇒ ~j(ω) = −ne~p(ω)

m
=

(ne2/m)~E(ω)
1
τ
− iω

⇒ σ(ω) =
σ0

1− iωτ
,

where σ0 =
ne2τ

m . In addition, there is also the oscillating magnetic field but its affect on the motion of electron is much
smaller due to the v/c factor. Therefore, we will ignore the effect of the AC magnetic field.

6.3 Heat capacity of the free electron model

We will proceed to calculate the electronic heat capacity the same way as we have done to calculate the phonon
heat capacity, that is, we will first calculate the total energy and then take the derivative with respect to temperature.
However, unlike the phonon, an electron is a fermion and we need to use the Fermi-Dirac distribution function in
stead of the Planck distribution function as in the case of phonons.

f (ε) =
1

e(ε−µ)/kBT +1
,

where µ is the chemical potential and is a function of temperature. At the absolute-zero temperature, µ = εF or the
Fermi energy.

Density of states We can calculate the density of states for free electrons using the similar approach for the phonon
case. If N is the total number of electrons, then

N = 2 · 4πk3
F/3

(2π/L)3 =
V

3π2 k3
F ,
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where the factor 2 indicates two degenerate states of electrons with spin-up and spin-down. From this equation, we
can calculate the Fermi wavevector kF , the Fermi energy εF , and the Fermi velocity vF .

kF =

(
3π2N

V

)1/3

eF =
h̄2

2m

(
3π2N

V

)2/3

vF =
h̄kF

m
=

h̄
m

(
3π2N

V

)1/3

.

We can rewrite N in terms of energy as

N =
V

3π2

(
2mε

h̄2

)3/2

.

Therefore, the density of states is equal to

D(ε)≡ dN
dε

=
V

2π2

(
2m
h̄2

)3/2

· ε1/2,

or
D(ε) =

3N
2ε

.

We will proceed to calculated the energy of electrons at a finite temperature, which is equal to

U =
∫

∞

0
dε εD(ε) f (ε)−

∫
εF

0
dε εD(ε).

We can rewrite this equation using the following identity

N =
∫

∞

0
dε D(ε) f (ε) =

∫
εF

0
dε D(ε)

⇒
(∫

εF

0
+
∫

∞

εF

)
εF D(ε)(ε) =

∫
εF

0
dε εF D(ε)

where from the first to second equation we multiply εF on both sides. We can now rewrite the equation for U as

U =
∫

∞

εF

dε (ε− εF)D(ε) f (ε)+
∫

εF

0
dε (εF − ε)[1− f (ε)]D(ε).

As we can see that f (ε) is the only term that is temperature dependent. Therefore, we can take derivative of U with
respect to T and obtain

Ce =
dU
dT

=
∫

∞

0
dε(ε− εF)

d f
dT

D(ε).

Since d f
dT peaks sharply at εF , we can approximate D(ε) with D(εF) and pull it out from the integral, that is,

Ce ≈ D(εF)
∫

∞

0
dε(ε− εF)

d f
dT

.

If we will let τ = kBT (τ IS NOT the mean free time), then d f
dT is

d f
dT

=
ε− εF

τ2 · e(ε−εF )/τ[
e(ε−εF )/τ +1

]2
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If we let x≡ ε−εF
τ

, we obtain

Ce = k2
BT D(εF)

∫
∞

−εF/τ

dx x2 ex

(ex +1)2 .

Since εF is much larger than τ , the lower limit of the integral is approximately equal to−∞. The integral then becomes∫
∞

−∞

dx x2 ex

(ex +1)2 =
π2

3
,

and the heat capacity becomes

Ce =
1
3

π
2D(εF)k2

BT =
1
2

π
2NkB ·

T
TF

,

where D(εF) =
3N
2εF

= 3N
2kBTF

and TF is the Fermi temperature. Therefore, the electronic heat capacity is linearly
proportional to T and becomes dominated at low temperature where the phonon contribution, which is proportional to
T 3, is negligible.
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