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In this chapter, we will use the band structures we calculate in the previous chapter to explain some properties of
materials that cannot be explained by the free electron model. In the previous chapter, we have learned that electrons
are allowed to occupy some range of energy and there is a region, which we call band gaps, at which there can be
no electron. We have also learned how the picture of electron bands gives rise to metals (or conductors), semimetals,
insulators and semiconductors. However, in this chapter we will only try to understand properties of semiconductors
using the band structure.

The semiconductors are a group of materials with a full band, which we call the valence band, but the energy gap
between the full band and the next empty band, which we call the conduction band, is quite small, roughly the same
order as kBT . The chemical composition of the semiconductors is AB where A are elements in Groups II, III and IV
and B are in Groups VI, V and IV, respectively. For example, the III-V compounds are indium antimonide (InSb) and
galium arsenide (GaAs), those in the II-VI group are zinc sulfide (ZnS) and cadmium sulfide (CdS), and those in the
IV-IV groups are silicon carbide (SiC), Si and Ge, which have the diamond structure.

In the semiconductors, the conductivity is due to two types of electrons. The first type of electrons is coming from the
thermal excitation of electrons from the valence band to the conduction band, and the second type of electrons is from
impurities. We will first only consider the contribution to the conductivity from the the first type, which we call the
intrinsic conductivity.

8.1 Band gaps

Furthermore, in the semiconductors, there are two types of band gaps.

1. Direct band gap: This type of the band gap occurs when the lowest point of the conductor band is right on top
of the highest point of the valence band, that is, they both are at the same~k−point. For example, InSb and αSn
have the direct band gaps.

2. Indirect band gap: This band gap occurs when the lowest point of the conductor band are the highest point of
the valence band are at different~k−points. The excitation between these two points requires an extra momentum
transfer from phonons. Therefore, the indirect absorption process has to include the transfer of the phonon
momentum besides the energy transfer and both momentum and energy have to be conserved, that is,

~k =~kc +~K

and
h̄ω = Eg + h̄Ω,

where~kc is the difference of the wave-vectors of the the lowest point of the conductor band are the highest point
of the valence band, ~K is the phonon wave-vector, and h̄Ω is the phonon energy, which is much smaller than h̄ω

or the photon energy. Some examples of the indirect band gap semiconductors are Ge and Si.
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We can determine the band-gap energy Eg by measuring the optical absorption. The absorption coefficient increase
rapidly if the incident photon energy is larger than the energy gap and the on-set of the coefficient defines the value of
the band gap.

8.2 Equation of motion for semiconductors

In the free electron model, in order to derive the electrical transport properties of metals we first derive the equation
of motion for the free electron by applying Newtons’s law. We will have to do the same derivation for the electrons in
the energy bands.

From the dispersion relation, we find that electrons in the energy band will travel with a group velocity vg, which can
be calculated from the dispersion relation:

vg =
dω

dk
=

1
h̄

dE
dk

or ~v =
1
h̄

∇kE(k),

where E(k) is the dispersion relation of electrons in the energy bands. The work done on the electron by an external
force can be written as

δE = Fvg δ t

or

δE =

(
dE
dk

)
δk

From these two equations , we obtain

Fvg δ t =
(

dE
dk

)
δk ⇒ F

1
h̄

(
dE
dk

)
δ t =

(
dE
dk

)
δk

Therefore, the equation of motion is

h̄
d~k
dt

= ~F ,

where in the last step, we rewritten the expression in a vector form. In this case, ~F can be electromagnetic force and
the calculations of the band electrons are similar to those of the free electrons. In Kittel, there is another derivation of
the equation of motion. I encourage you to look at that derivation as well.

8.3 Holes and effective mass

In this section, we will consider physical properties of charge carriers given rise by the presence of energy bands.
We will focus our attention only in semiconductors. You all know now that for semiconductors at the absolute zero
temperature the valence band is filled and there is no electron in the conduction band. However, at a finite temperature
some electrons can be excited by thermal energy from the valence band to the conduction band, leaving behind a
vacancy in the valence band. This vacancy behaves like a charge carrier with a positive charge +e, that is, it can move
around just like an electron but has a positive charge +e. We normally call this vacancy in the valence band a hole.
Therefore, for ideal semiconductors (by an ideal semiconductor, I mean, a semiconductor without impurities) at a finite
temperature, there can be charge carriers with both positive and negative charge. Which charge carriers dominate the
transport properties depends on how easily they can move inside the lattice. This question is related to effective mass,
which we will consider later. First, we will look at the properties of holes.
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1. ~kh =−~ke
Since the total wavevector of electron in the filled valence band has to be zero, when one electron leaves the
valence band taking with it the momentum of h̄~ke it must leave behind a negative momentum of −h̄~ke. This
negative momentum is in fact the momentum of the hole. Therefore, we have the above mentioned relation.

2. Eh(~kh) =−Ee(~ke)
Similar to the case of the wave vector, due to the conservation of energy when one electron leaves the valence
band taking with it an energy of Ee(−~ke). Since we can think of the filled valence band as the ground state with
the initial total energy of zero, the energy left behind by the electron must be negative and that is the energy of
the hole.

3. ~vh =~ve
This is due to the fact that ∇kEh(kh) = ∇kEe(ke).

4. mh =−me, where m, in this case, is the effective mass, which we will discuss in detail later. The effectively mass
is inversely proportional to the curvature of energy band. Therefore, since the band of holes is an up-side-down
version of the respective band of electrons, the curvature of hole bands must be opposite to that of electrons
bands.

5. The equation of motion for electrons and holes are the same except for the fact that d~ke/dt becomes d~kh/dt, −e
becomes +e, and~ve becomes~vh.

Effective mass The effective mass indicates how difficult or easy it is for electrons or holes to move around. The
definition of the effective mass comes from considering the free electron dispersion relation E(k) = h̄2k2

2m . We will
immediately see that m in this case of equal to h̄2/(d2E(k)/dk2). Therefore, we will adopt the same expression to
define the effective mass for electrons and holes in the band structure, that is,

m? =
h̄2

d2E(k)/dk2 .

Since d2E(k)
dk2 is a curvature of the energy band, the effective mass m? is inversely proportional to the curvature of the

energy band. Therefore, if the curvature is large, m? is small and electrons or holes can move easily abound the lattice.
In contrast, if the curvature of small, m? is large and electrons or holes will have more difficulty moving around the
lattice.

In three dimensions, we can generalize the effective mass and write it in terms of tensor.

1
m?

∣∣∣∣
µν

=
1
h̄2

d2E(~k)
dkµ dkν

,

and for the equation of motion

dvµ

dt
=

1
h̄

d2E(~k)
dkµ dt

=
1
h̄

d2E(~k)
dkµ dkν

dkν

dt
=

1
h̄2

d2E(~k)
dkµ dkν

Fν =

(
1

m?

)
µν

Fν ,

where µ and ν are indices in the Cartesian coordinate, equal to x,y,z.

We note that the effective mass is not the physical mass of electrons or holes. It is basically due to the fact that electrons
and holes in the lattice can feel the potential energy from nucleuses, which influences its motion through the lattice as
if its mass (inertial mass) has changed.
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Example: effective mass for one dimensional lattice We will consider the one-dimensional lattice of which the
dispersion has been calculated in the previous chapter. For the upper band or the conduction band, the dispersion
relation near the zone boundary of electrons is

E+k̃ = E++
h̄2k̃2

2me

[
1+

2λ

U

]
,

and therefore the effective mass is equal to

m?
e =

me

2λ/U +1
,

where me is the mass of the electron. For the lower band or the valence band the dispersion relation near the zone
boundary of holes is

E−k̃ = E−+
h̄2k̃2

2me

[
1− 2λ

U

]
,

and therefore the effective mass of holes is equal to

m?
h =−m?

e =
me

2λ/U−1
.

The curvature of the E−k̃ band is negative but since m?
h =−m?

e for the hole in the valence band, the effective mass of
the hole is positive. Note that U < λ (2λ/U > 1) and hence both m?

h in the valence band and m?
e in the conduction

band for the one-dimensional lattice are positive. However, in general, the effective mass can be negative.

Physically, we can think of the situation where electrons and holes exchange momentum with the lattice. A negative
effective mass implies that the net momentum is transferred from from electrons to the lattice, that is, electrons is losing
its momentum and being decelerated. This effect happens at the top of the conduction band or the local minimum. The
effective mass can become very larger if the curvature of the band is small. This is the case for 4 f electrons, where
the band width is narrow and hence the curvature of the bands is small. We, therefore, collectively call the compounds
with 4 f electrons the heavy fermions.

Example of band structure in a real system: silicon and germanium Fig. 8.1 shows the calculated band structure
of germanium derived from the combine experimental and theoretical results. The shade bands are the valence bands.
We will only consider the top three bands of the valence bands and the lowest three bands of the conduction bands.
Those six bands are the result of the hybridization of the p−orbitals, making the outer energy bands of the germanium
in the lattice different from the energy level of the germanium atom. Electrons fill up three of these six p−orbitals,
which becomes the valence bands. The rest becomes the conduction band.

We can see that for the three valence bands two of them are degenerate at k = 0 with different curvature. One with less
curvature gives rise to the larger effective mass hence called heavy holes (holes for the valence band), whereas the
other with more curvature corresponds to the smaller effective mass hence called light holes. The third band splitting
from the other two at k = 0. This splitting is due to the spin-orbit interaction. We, therefore, call it split-off holes.
Germanium has an indirect gap since the top of the valence band is at k = 0 whereas the bottom of the conduction
band is located at k = 2π

a ( 1
2

1
2

1
2 ).

The overall feature of the band structure of silicon is very similar to germanium with the exception that the bottom of
the conduction band is along the direction (100).

Note that for simplicity we assume that the dispersion near the k = 0 point is spherically, that is, the coefficients in
front of k2

x , k2
y , and k2

z are all the same. However, in a real system, these coefficients are normally different and the
dispersion forms an elliptical shape. In that case, the effective mass has to be more appropriately expressed in a form
of tensor.
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Figure 8.1: The calculated band structure for germanium (Ge) by C. Y. Fong shows the indirect band gap and the
spin-orbit splitting at k = 0. The figure is taken from Kittel.
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Measurement of effective mass We can measure the effective mass in semiconductors by means of cyclotron res-
onance. we all familiar with the cyclotron motion of a free charged particle in a magnetic field. In this case, we can
think of an electron in the lattice as a ‘free’ electron with different mass (effective mass). We will consider the electron
near the bottom of the conduction band and a hole near the top of the valence band, where the dispersion varies as k2.
If we applied the external magnetic field ~B, the equation of motion of this electron or hole become

m? d~v
dt

=∓e~v×~B,

where the − and + signs indicate the electron and hole, respectively. You all know the solution to this equation
of motion from the electromagnetic class that the trajectory of the motion of the charge particle is circular with the
frequency of the circular motion or the cyclotron frequency is equal to

ωc =
eB
m?

.

Note that in order to be able to measure this cyclotron frequency a sample must be pure of impurity to the level that
the mean free length is long enough to allow the charge carrier to transverse around a circular path. We can measure
this resonance cyclotron frequency by absorption of the electromagnetic wave whose frequency matches the cyclotron
frequency.

As we have noted above that in general the dispersion can have an elliptical shape and therefore the cyclotron frequency
also depends on the orientation of the applied magnetic field with respect to the ellipsoid. Therefore, by varying the
orientation of the magnetic field we can measure the effective mass tensor of the semiconductors as well as shown in
Fig. 8.2.

Figure 8.2: Standard labels of the symmetry point of the Brillouin zone of the fcc and bcc lattice. The figure is taken
from Kittel.

8.4 Intrinsic charge carrier concentration

In this section, we will consider the charge carrier concentration of a pure semiconductor, that is, a semiconductor
without any impurities. Let µ be the Fermi level or the chemical potential. Our task is to calculate µ . We will assume
that the interest energy is near the Fermi level, that is, E−µ � kBT . Therefore, the Fermi-Dirac distribution function
for electrons becomes

fe =
1

e(E−µ)/kBT +1
≈ e(µ−E)/kBT .
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Figure 8.3: Effective mass of germanium as measured by the cyclotron resonance as a function of orientation of the
applied magnetic field with respect to the ellipsiod. The figure is taken from Kittel.
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The energy of an electron near the bottom of the conduction band is

E+k = E++
h̄2k2

2me
,

which we have derived in the previous chapter. We have also derived the density of states for electrons:

De(E) =
1

2π2

(
2me

h̄2

)3/2

(E−E+)
1/2,

where we ignore a factor of the volume V and replace ε with E−Ec. Now we are ready to calculate the concentration
of electrons in the conduction band at temperature T ,

n =
∫

∞

E+

De(E) fe(E) dE

=
1

2π2

(
2me

h̄2

)3/2

eµ/kBT
∫

∞

E+

(E−E+)
1/2e−E/kBT dE

n = 2
(

mekBT
2π h̄2

)3/2

e(µ−E+)/kBT . (8.1)

We can do the same calculation to find the concentration of holes at temperature T . The distribution of holes at
temperature is 1− fe, which is

fh =
1

e(µ−E)/kBT +1
≈ e(E−µ)/kBT .

The dispersion relation of the hole is also different.

E−k = E−−
h̄2k2

2mh
.

Therefore, the density of states for holes is

De(E) =
1

2π2

(
2mh

h̄2

)3/2

(E−−E)1/2.

The same calculation leads to the concentration of holes at temperature T ,

p = 2
(

mhkBT
2π h̄2

)3/2

e(E−−µ)/kBT . (8.2)

We can see that the product of n and p is independent of the Fermi level µ , that is,

np = 4
(

kBT
2π h̄2

)3/2

(memh)
3/2 e−Eg/kBT ≡ n2

i ,

where Eg = E+−E−. This relation is called the law of mass action, which holds not only for the intrinsic case but also
for the extrinsic case that we will consider later. However, at the equilibrium the concentration of holes and electrons
must be equal, that is,

n = p = 2
(

kBT
2π h̄2

)3/2

(memh)
3/2 eEg/2kBT .

We can also calculate the Fermi level by letting Eqs. 8.1 and 8.2 be equal to obtain

µ =
1
2

Eg +
3
4

kBT log
(

mh

me

)
,

where µ is measured from the top of the valence band. If mh = me, then the Fermi level will lie at the middle of the
gap, that is, µ = 1

2 Eg.
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Doped semiconductors and extrinsic charge carrier We sometimes call doped semiconductors deficit semicon-
ductors. We can dope semiconductor without altering much its structure by replacing the quadvalent atom of the
semiconductors with its trivalent or pentavalent counterparts. Therefore, there are two types of doped semiconductors.

1. n-type semiconductor: In this case, the quadvalent atom is replaced by the pentavalent atom, which will con-
tributed an extra electron to the semiconductor. This excess electron can be easily ionized and can move around
more or less freely around the lattice, increasing the conductivity of the semiconductor.

2. p-type semicondyuctor: In this case, the quadvalent atoms is replaced by the trivalent atom, which will con-
tribute an extra hole to the semiconductor.

The extra charge will feel the screened Coulomb potential from the impurity ion. The ionization energy of this extra
charge can be estimated by assuming that the impurity ion introduced the Coulomb potential resembling that of the
hydrogen atom. However, we have to replace the mass of an electron with the effective mass and include the dielectric
constant due to the screening effect. You are asked to calculate this energy in the homework.

For an example of the doped semiconductors, let us consider a pure-germanium material doped with arsenic atoms.
Germanium is a Group IV semiconductor, while arsenic is in Group V with five valence electrons. To first approxi-
mation, we will ignore the difference in size between the germanium and arsenic atom and assume that the structure
of the lattice does not change. Since arsenic has five valence electrons, one of its electron will not from a bond with
the nearby germanium atoms and become free, leaving behind a positively-charge ion center with charge +e. In this
case, we call the arsenic atoms donors, since they give electrons to the semiconductors. On the other hand, if we dope
germanium with atoms in Group III, those atoms will give holes or accept electrons from the valence band and we will
call those impurities acceptors. The attractive force between this free electrons and the positive ion center is similar
to the attraction between a electron and proton in the hydrogen atom. However, while the electron in the hydrogen is
in the free space, the electron in the doped semiconductor is inside the lattice of germanium and it feels other forces
from the lattice. The lattice will govern the motion of the electron in two ways

1. Due to the dielectric property of the material, the force that the electron feels is smaller be a factor of 1/ε , where
ε is the dielectric constant. In germanium, ε ≈ 16 but in other semiconductors ε can be as large as 100 or more.
It turns out that ε is large in those semiconductors with a small energy gap. In one limit, we know that for a
metal the energy gap is zero and the dielectric constant becomes infinite. In the other limit, in the insulator, the
energy gap is very large and the dielectric constant goes to one for the vacuum, which the the ideal insulator.

2. As we have already know, the mass of the electron inside the lattice is different from the free-space mass.
Therefore, in calculating the binding energy between the electron from the donors and the ion center, we need
to use the effective mass, which is smaller than the free-space electron mass by a factor of 0.1 or less.

Knowing these facts, we can calculate the ionization energy of the donor electrons Ed using the formulation of the
ground state energy of the hydrogen atom and replace m by m? and scale the Coulomb force by 1/ε to obtain

Ed = 13.6× 1
ε2

m?

m
eV.

For a semiconductor that often has a small band gap and hence large ε , Ed is much smaller than the band gap.
Therefore, the electrons from the donors (or holes from the acceptors) are much more likely to be excited into the
conduction band (or into the valance band). These electrons, which we call extrinsic charge carriers hence dominate
the electrical transport of the semiconductors as oppose to the intrinsic charge carriers, which are due to the thermal
excitations of electrons from the valence band to the conduction band. The donor level Ed is near the bottom of the
conduction band E+ and the acceptor level Ea is near the top of the valence band E−, where E+−Ed and Ea−E− are
much smaller than Eg = E+−E−.
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Next we will calculate the the density of charge carriers for the case of doped semiconductors. Unlike for the intrinsic
case, the density of electrons in the conduction band and that of holes in the valence can be different for the extrinsic
case, that is,

n− p = ∆n 6= 0.

However, like for the intrinsic case, the law of mass action still holds, that is,

np = n2
i .

From these two relations, we can write n and p in term of ni and ∆n as{
n
p

}
=

1
2
[
(∆n)2 +4n2

i
]1/2± 1

2
∆n.

We can also write the ration ∆n
ni

in terms of the intrinsic chemical potential µi and the new chemical potential for the
doped semiconductors µ as

∆n
ni

= 2sinhβ (µ−µi),

where we note that
n = nieβ (µ−µi) and p = nieβ (µi−µ).

We will next calculate the number of occupied donor level using what we have learned in statistical mechanics. The
average number of occupied donor levels is equal to

〈nd〉=
∑N je−β (E j−µN j)

∑e−β (E j−µN j)
.

We will only consider two states, that is, the empty state and the singly occupied state. Note that even though two
electrons with opposite spins can occupy the same state, their Coulomb repulsive interaction gives rise to a much
higher energy level and hence the two-electron state is excluded. Therefore, we obtain

nd = 〈nd〉Nd = Nd
2e−β (Ed−µ)

1+2e−β (Ed−µ)
=

Nd
1
2 eβ (Ed−µ)+1

,

where a factor of 2 indicates the two spins of electrons.

For the acceptor levels, there can be two state; one with a single electron in the acceptor level and the other with two
electrons in the acceptor level. Note that if there is no electron in the acceptor level, it will equivalently mean that
there are two holes in the acceptor level, which requires quite a lot of energy. We, therefore, will exclude this state.
Therefore, we obtain the average number of the acceptor levels equal to

pa = (2−〈nd〉)Na = Na

(
2− 2eβ µ +2e−β (Ea−2µ)

2eβ µ + e−β (Ea−2µ)

)
=

Na
1
2 eβ (µ−Ea)+1

,

Now we will suppose that
Ed−µ � kBT

and
µ−Ea� kBT.

This assumption is quite similar to the assumption that Eg� kBT for the intrinsic case. From the relations for nd and
pa above, we can estimate that nd � Nd and pa� Na. That means, the number of bound states for both electrons and
holes are negligible and

∆n = n− p = Nd−Na.
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Therefore, we can write {
n
p

}
=

1
2
[
(Nd−Na)

2 +4n2
i
]1/2± 1

2
(Nd−Na) .

and
Nd−Na

ni
= 2sinhβ (µ−µi),

In the limit of low impurity concentration (Nd−Na)
2→ 0, we have{

n
p

}
= ni±

1
2
(Nd−Na) .

On the other hand, in the limit of high impurity concentration, that is, Nd−Na
ni
� 1, we obtain

n≈ Nd−Na

p≈ n2
i

Nd−Na

}
Nd > Na

and
n≈ n2

i
Na−Nd

p≈ Na−Nd

}
Na > Nd .

This series of equations show that the majority of charge carriers is due to the impurity donors and acceptors, which
contribute electrons to the conduction band and holes to the valence bond, respectively.

8.5 p−n junction

Now we will consider a device that we can make from the doped semiconductors. We can combine the p−type
semiconductor ans the n−type semiconductor to create a diode. Some of you might be familiar with how the diode
works. The diode will allow current to go through one direction but prohibit the current from passing through the
opposite direction. In this section, we will try to understand how the diode works.

When we connect the p−type and n−type semiconductors, the electric potential from the ion centers will shift the
chemical potential µ . On the n−type semiconductor, the ion centers have positive charge while on the p−type semi-
conductor, the ion centers have negative charge. Therefore, the electric potential is higher on the n−type semiconduc-
tor than on the p−type semiconductor and the electric potential will point from the former to the latter. Next we will
consider the electron and hole distribution. The majority of electrons will be on the n−type side while the majority
of holes will be on the p−type side. There is repulsion from the negative ion centers on the p−type side on electrons
preventing electrons to move to the p−type side and from the positive ion center on the n−type side on holes prevent-
ing holes to enter the n−type side. Therefore, the electrons on the n−type side cannot recombine with the holes in the
p−type side and hence electrons and holes are separated. The small region where electrons and holes are separated
due to the electric potential from the ion center is called the depletion layer, which extend for about 102 to 1o4 Å.
Normally, some electrons from the n−type side can diffuse to the p−type side and vice versa for holes. The region
that holes and electrons can diffuse to is called the transition region. However, for simplicity, we will assume that
the boundary between the n−type and p−type semiconductors is abrupt and the charge carrier concentration can be
expressed by

Nd(x) =
{

Nd , x > 0
0, x < 0

}
,

and

Na(x) =
{

0, x > 0
Na, x < 0

}
,

where x is the distance along the long axis and x = 0 indicates the boundary. This abrupt approximation only works if
the transition region is much smaller than the depletion region.
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p− n junction in equilibrium We will first consider the case where there is no external electric field. We now
know that there is the electric potential φ(x) between the n−type and p−type sides. From a perspective of electrons,
this potential will shift both conduction and valence bands by a constant −eφ(x). Therefore, the carrier densities of
electrons and holes at equilibrium, which now depends on x as well, become

n(x) = n0e−
E+−eφ(x)−µ

kBT

for electrons, and

p(x) = p0e−
µ−E−+eφ(x)

kBT

for holes, where n0 = 2
(

mekBT
2π h̄2

)3/2
and p0 = 2

(
mhkBT
2π h̄2

)3/2
as we have derive before. For simplicity, we will consider

the carrier concentration in the limit where x is far from the boundary, that is, x→ ∞ or x→−∞. We will assume that
the p−type in on the left and the n−type side is on the right. Therefore, we obtain

n(∞) = Nd = n0e−
E+−eφ(∞)−µ

kBT

p(∞) = Na = p0e−
µ−E−+eφ(−∞)

kBT ,

since far to the left we should find that the concentration of electrons on the conduction band must be equal to the
concentration of donors and far to the right we should find that the concentration of holes on the valence band must be
equal to the concentration of acceptors. Now we will multiply the top two equations and solve from the change in the
potential going from one side of the p−n junction to the other side, that is,

e∆φ = eφ(∞)− eφ(−∞) = E+−E−+ kBT log
[

NdNa

n0 p0

]
or

e∆φ = Eg + kBT log
[

NdNa

n0 p0

]
From this equation, we can see that the potential difference is large if the charge imbalance due to impurity is large,
that is, there are a lot of donors and acceptors and hence a lot of ion centers on both n−type and p−type sides.

In the above discussion, we consider the p− n junction in such a way that the chemical potential µ does not charge
but the energy bands shift due to the electric potential. Alternatively, we can consider the case where the energy bands
remain the same but the chemical potential change coming from the p−type side to the n−type side. In this case, the
equations for the carrier density become

n(x) = n0e−
E+−µe(x)

kBT

p(x) = p0e−
µe(x)−E−

kBT ,

where µe(x) = µ + eφ(x) and the subscript x indicates that the potential is from the perspective of electrons and not
holes. We can then redefine the potential difference between the two sides by

e∆φ = µe(∞)−µe(−∞).

Looking at this equation, we can see that the potential difference exists to bring the chemical potential on the side of
the junction to the same level, which is consistent with the first case where we assume that the chemical potential on
both sides of the junction is the same.

The next questions that we can ask are what is the electric potential and how large is the depletion region. To answer
the first question, we will have to apply Poisson’s equation from the classical theory of electromagnetism, that is,

−∇
2
φ =−d2φ

dx
=

ρ(x)
εε0
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Now we will have to approximate ρ(x). First, we know that far away from the boundary the total charge is neutral
since the number of charge carriers and ion centers with opposite charge are the same. Second, we know that inside
the depletion region electrons and holes recombine. Therefore, the total charge is due to the ion center, which is no
longer neutral. On the n−type side, ρ(x) is approximately equal to −eNd and on the p−type side to eNa. Therefore,
we obtain

d2φ

dx2 =


0, x > dn

− eNd
εε0

, 0 < x < dn
eNa
εε0

, dp < x < 0
0, x <−dp

,

where dn and dp is the width of the depletion region on the n−type side and n−type side, respectively. We can integrate
these equations to obtain φ(x)

φ(x) =


φ(∞), x > dn

φ(∞)− eNd
2εε0

(x−dn)
2, 0 < x < dn

φ(−∞)+ eNa
2εε0

(x+dp)
2, dp < x < 0

φ(−∞), x <−dp

Next we will apply the boundary condition. At x = 0, φ and dφ/dx is continuous. The continuity of dφ/dx at x = 0
gives

Nddn = Nada.

That is, the width of the depletion region is inversely proportional to the number of donors or acceptors. The continuity
of φ at x = 0 implies that (

e
2εε0

)(
Ndd2

n +Nad2
p
)
= φ(∞)−φ(−∞) = ∆φ .

We can solve for dn,p to obtain

dn,p =

[
(Na/Nd)

±1

(Nd +Na)

2εε0

e
∆φ

]1/2

Making of rectifier using the p− n junction Now we will consider the case we apply electric field to the p− n
junction. There are two ways we can connect the power supply to the p−n junction.

1. Forward bias: Current can pass through the p−n junction.

2. Back or reverse bias: Current cannot go through the p−n junction.

The principle behind the rectifier can be best explained using Figure 8.4.
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Figure 8.4: The charge density and electric potential in the depletion zone without the external voltage (a), with the
forward bias (b) and with the back or reverse bias (c). The figure is taken from Aschroft&Mermin.


