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In this chapter, we will learn about another group of materials, that is, metals. From the previous chapter, we know
that metals are a group of materials with the unfilled top-most band. However, we do not know what this unfilled
band looks like. Therefore, here we will focus on how to determine the shape of this band or what we will call Fermi
surface in metals.

9.1 Fermi surfaces

For simplicity, we will first start with again the free electron model in one dimension. Then we will add electron-lattice
interaction and generalize to the three-dimensional case later. For the free electron model, the dispersion relation can
be described by a simple quadratic equation. Now let us imagine that we add electrons to this dispersion. The first
electron will go the lowest state and when the number of electrons increases, so does the maximum energy. This
maximum energy is what we called the Fermi level. The Fermi surface indicates the surface with energy equal to the
Fermi level. Note that the Fermi surface in one dimension is a lone segment.

Now if we include a weak interaction between electrons and lattice, we will find that the dispersion can be mapped
into the first Brillouin zone as we have discussed before. That means, if we keep adding electrons and the Fermi level
keeps rising, then at some point the energy will be beyond the first Brillouin zone and we have to map it back to the
first Brillouin zone. This is in fact the origin of the band structure that you are now all familiar. Therefore, the Fermi
level is now on the second band. We can now imagine that if we keep adding electrons more bands will be filled and
Fermi level keeps rising. Hence, the shape of the Fermi surface will also change depending the shape of the band and
hoe high the Fermi level in that band. In two dimensions, we will have to think of the Fermi level as a radius of a
circle and in three dimensional as a radius of a sphere. In particular, in the free-electron model in three dimensions,
the Fermi surface is constructed from a sphere of radius~kF , which depends on the value of electron concentrations or
the number of electrons in a unit cell. Below will learn how to construct the fermi surface but first we will remind
ourselves how to think of or draw the dispersion relation. There are three schemes to think of the dispersion relation.

1. Extended zone scheme: In this case, we will divide the dispersion into different zone and the different bands
belong to the different zone. Therefore, in this case, there are the second, third, forth, and so on Brillouin zones
beyond the first Brillouin zone.

2. Reduced zone scheme: In this case, we will only draw all bands in one zone by mapping the dispersion at high
energy back to the first Brillouin zone.

3. Periodic zone scheme: In this case, the first Brillouin zone of the reduced zone scheme is drawn repeatedly for
every zone.

The next question that we have to answer is that how we can divide the momentum space into different Brillouin zones.
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Construction of Brillouin zones At the beginning of this course, we have already learned how to construct the
first Brillouin zone and may have touch on the construction of higher-order zone. However, let us again see how the
construction goes.

1. Draw a straight line from the origin to nearest, second nearest, third nearest and so forth neighbors.

2. Draw a line bisecting and perpendicular to the the line in drawn in No. 1.

3. The inner most enclosed area is called the first Brillouin zone. The next layer of surfaces is the second Brillouin
zone and so on.

The Fermi surface is defined to be the outer most Brillouin zone with states occupied by electrons assumed that the
Fermi level is a sphere for a three-dimensional lattice.

In Kittel, there is an example of a square lattice. Once the Brillouin zones are constructed, we then draw a Fermi
level, in this case, we will assume that the Fermi level is a sphere. Note that this is only the case for the free electron
model. The overlapping area of the sphere and the Brillouin zones indicate the area of occupied states. Therefore,
the boundary between the occupied states and unoccupied states indicates the Fermi surfaces. We will have to use the
reduced zone scheme to map those occupies are or states back to the first Brillouin zone.

There is another construction of Fermi surfaces, which is credited to Harrison. In this construction, the spheres of
radius |~kF | are draw at all centers of the first Brillouin zone. The occupied states in the first Brillouin zone are
indicated by the area which is enclosed by at least one sphere. Those in the second Brillouin zone are indicated by the
area which is enclosed by at at least two sphere and so on. I think you get the idea. At the end, these two methods of
constructing the Fermi surfaces yield the same result.

Nearly free electrons Now we will go beyond the free electron model and include the electron-lattice interaction.
However, we will assume that this interaction is still quite small. Once the interaction between electrons and lattice is
included, we can redraw the Fermi surfaces keeping in mind the following facts:

1. The interaction cause the opening of energy gaps at the zone boundaries.

2. The Fermi surface almost always is normal to the zone boundaries.

3. The periodic potential from nucleuses will make the sharp corners of the Fermi surface smooth.

4. The total area enclosed by the sphere of the Fermi level does not depend on the electron-lattice interaction. It
only depends on the number of electron in a unit cell or electron concentration.

In this class, we will not attempt to calculate the detailed band structure and will not be interested in the quantitive
detail of the Fermi surfaces. Therefore, we will only try to get a qualitative description of the Fermi surface in order
to understand physics of metals in general.

9.2 Measurements of Fermi surfaces

In this section, we will learn how we can measure the Fermi surfaces in metals. The shape of Fermi surfaces affect
many physical properties of metals. Therefore, there are several methods of measuring the Fermi surfaces. These
methods include magnetoresistance, anomalous skin effect, cyclotron resonance, magneto-acoustic geometric effects,
the Subnikov-de Haas effect, and the de Haas-van Alphen effect. In this class, we will not consider all of these effects
but will focus on only one, that is, the de Haas-van Alphen effect. This method relies on the fact that the electron orbit
is quantized in magnetic field. We will learn about the basic theory behind this effect.
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Quantization of electron orbit in magnetic field In the presence of magnetic field, electron momentum can be
written as

~p = ~pkin +~pm = h̄~k+q~A,

where the last term refers to the momentum due to the magnetic field. Next, we will apply the Bohr-Sommerfeld
relation to express the quantization of the orbits in the magnetic field:∮

~p ·d~r = (n+ γ)2π h̄,

where γ is the phase correction factor and equal to 1
2 for free electrons. From the expression of momentum, we obtain∮

~p ·d~r =
∮

h̄~k ·d~r+q
∮
~A ·d~r

From the equation of motion for electron, we have

d~p
dt

= q~v×~B

⇒ h̄
d~k
dt

= q
d~r
dt
×~B

⇒ h̄~k = q~r×~B.

Therefore, we can write ∮
h̄~k ·d~r = q

∮
~r×~B ·d~r =−q~B ·

∮
~r×d~r =−2qΦ,

where
∮
~r×d~r = 2A where A is the area enclosed by the orbit. For the other term, we can apply the Stokes theorem to

obtain
q
∮
~A ·d~r = q

∫
∇×~A ·dσ = qΦ.

Therefore, at the end, we have the following relation for the quantization of the orbits∮
~p ·d~r =−qΦ = (n+ γ)2π h̄.

This equation imply that the magnetic flux of electrons in the orbits is quantized, that is,

Φn = (n+ γ)
2π h̄

e
,

where we have replaced q by−e for electron charge. The unit of the quantization of flux is equal to 2π h̄
e . Now we have

to find the relation between the quantization of magnetic flux with the area in the reciprocal space. First we note that
from the equation of motion

∆r =
h̄

eB
∆k,

that is,

An =

(
h̄

eB

)2

Sn

where An and Sn are the areas in the real and reciprocal space, respectively. Since Φn = BAn, it follows that

Φn = BAn =

(
h̄
e

)2 1
B

Sn = (n+ γ)
2π h̄

e
,

that is
Sn = (n+ γ)

2πe
h̄

B.
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From this equation, we can see that the area in the reciprocal space is proportional to the magnetic field. Therefore, by
increasing B from orbits n to n+1, we can see the change in the area of the Fermi surface in the reciprocal space by a
unit of 2πe

h̄ , that is,

S
(

1
Bn+1

− 1
Bn

)
=

2πe
h̄

This periodic change in the Fermi surface with respect to the magnetic field give rise to the oscillation of other physical
measurable properties. If the oscillation is measured in the magnetic moment, then we will call that phenomenon
the de Hass-van Alphen effect. But if the oscillation is measured in the electrical resistivity, the we will call the
phenomenon the Shubnikov-de Haas effect. In this class, we will only consider the de Haas-van Alphen effect.
However, the physics of the the Shubnikov-de Haas effect is the same.

de Haas-van Alphen Effect Now we will try to explain the oscillation of the measured magnetic moment in mag-
netic field. The de Haas-van Alphen is the result of the quantization of the magnetic flux which we discussed above.
In the measurement, we can observe this effect in a pure sample where the collision with impurity is kept at minimal
and the measurement should be done at as low temperature as possible to decrease the thermal population of the higher
Landau levels.

For simplicity, we will only consider the case at T = 0 K. The area in the~k space for each Landua level is equal to

∆S = Sn+1−Sn =
2πe

h̄
B.

But we know that the area of one state is equal to (2π/L)2, where L is the size of the sample. Note that we ignore the
spin degree of freedom. Therefore, the number of states for each Landau level is equal to

D(B) =
2πeB

h̄

(
L

2π

)2

∝ B.

As we can see that as B increases, each Landau level can also affords more electrons. Now we will consider the
consequence of this result. Suppose that there are N electrons in the system. Let Bs be a critical field at which all
levels are completely filled up to the s+1th level and the next level is empty. Then we have to following relation

N = sD(Bs)

Now suppose that we increase the magnetic field. Since D for each level increases, more electrons can be in the lower
levels. Therefore, the sth becomes partially filled. And the number of electrons in this level is equal to

ns = N− sD(B).

where B > Bs The total energy for the filled level is equal to

s

∑
n=1

Dh̄ωc

(
n− 1

2

)
=

1
2

Dh̄ωcs2,

where ωc = eB/m?. And for the partially filled level that lies on top of the filled level, the energy of that level is equal
to (

s+
1
2

)
h̄ωc(N− sD).

Therefore, the total energy is the sum of the above two terms and plotted as a function of 1/B.
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In order to calculate the magnetization, we first need to calculate the total energy of the electrons and the magnetization
can be calculated using µ =− ∂U

∂B . The oscillation of µ occurs as the Landau level change from being filled to partially
filled and back to being filled again. And the period of this oscillation is equal to

∆

(
1
B

)
=

2πe
h̄S

,

where is the extremal area which will contribute the most to the response.

Example of Fermi surface in Cu Copper is the f cc lattice and the shortest distance across the first Brillouin zone
is

2π

a
31/2 =

10.88
a

.

For the monovalent metal, the concentration of electron per unit cell is equal to

n =
4
a3 ,

where there are four Cu in the unit cell for the f cc lattice. Hence, the radius of the Fermi level extends to

kF =
(
3π

2n
)1/3

=
4.90

a
.

Hence, the diameter of the Fermi sphere is equal to 9.80
a , which is the Fermi sphere is contained within the first Brillouin

zone. However, since there are energy gaps at the boundaries that tend to lower the energy near the zone boundaries.
Therefore, the Fermi level is not spherical and can stick out from the first Brillouin zone.

Measuring Fermi surface of gold In this example, we will try to calculate the extremal area of the Fermi surface
given the period of the magnetization oscillation. Suppose that the period of the magnetization oscillation for gold
measured along the [111] direction is 2×10−9 gauss−1 which corresponds to

S =
2πe

h̄
1

∆(1/B)
= 4.8×1016 cm−2

In addition, the second strong oscillation is also observed at the period of 6×10−8 gauss−1, which corresponds to the
area of 1.6×1015 gauss−2. This smaller area indicate the neck area at the zone boundaries. Another extremal orbit is
the ’dog’s bone’ see Fig. 9.2.
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Figure 9.1: Landau levels. The figures are taken from Kittel.
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Figure 9.2: Fermi surfaces of copper show the ’neck’ and ’dog’s bone’ orbits. The figure is taken from Kittel.


