
.

.

.

ck−1,1 ♠ · · · ck−1, j−1♠ ck−1, j ♠ · · · ck−1,k−1♠

ck1 ♥ · · · ck, j−1 ♥ ck j ♥ · · · · · · ckk ♥

.

.

.

Row k − 1

Row k

Col 1 · · · Col j − 1 Col j · · · Col k − 1 Col k

�� �� �� ��

permutation π

.

.

.

π(k − 1) = ♠

π(k) = ♥

�
��

�

Figure 4. When Ckj is the first small card and j ≥ 2, then swap the first j − 1 cards of row k − 1 with the
first j − 1 cards of row k, change the suit of card Ckj , then swap the remaining cards of rows k − 1 and k. In
the new Vandermonde table, card Ckj remains the first small card.

leaving card Ck j in its place, but changing its suit from hearts to spades, then swapping
the remaining k − j cards of rows k − 1 and k, as in Figure 4.

Why is it legal to change the suit of card Ck j from hearts to spades? Since Ck j was
the first small card, then the spade card Ck−1, j−1 is not small and therefore has a value
strictly greater than x j−2. Thus all spade cards can take on values less than or equal to
x j−1. Since Ck j is small, its value is at most x j−1, so changing it from hearts to spades
is allowable.

As before, Ck j remains the first small card of C ′, so (C ′)′ = C and C ′ has permuta-
tion π ′, which has opposite parity of π since they differ by a transposition. Thus there
is a one-to-one correspondence between the positively counted Vandermonde tables
with small cards and the negatively counted Vandermonde tables with small cards.
Therefore the determinant of Vn is the number of Vandermonde tables with no small
cards, namely,

∏
0≤i< j≤n(x j − xi ), as desired.

Remark. For another combinatorial proof of Vandermonde’s determinant, where the
cancellation occurs in the product instead of the sums, see the short paper by Ira Gessel
[1].
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Evaluation of Some Improper Integrals
Involving Hyperbolic Functions

Michael A. Allen

In this note I present a result that seems elementary enough to be added to the list of
tricks for evaluating integrals taught in a complex variables course, but one to which I
have been unable to find any reference. It gives a straightforward procedure that can be
used to evaluate a class of integrals some of which do not appear in [1] and for which
Mathematica 5.1 [2] generates expressions involving exotic special functions that it
cannot simplify further.
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Theorem 1. The principal value of the integral

In =
∫ ∞

−∞
xn f (x) dx (n = 0, 1, 2, . . . ) (1)

can be evaluated by summing residues of zm+1 f (z) for m = 0, 1, . . . , n, provided that
there exists a positive real number β such that the following conditions are met:

(i) f (x + iβ) = f (x) for all x;

(ii) (x + iα)n+1 f (x + iα) → 0 as |x | → ∞ whenever 0 ≤ α ≤ β;

(iii) f (z) is analytic in an open set that contains S = {z : 0 ≤ Im(z) ≤ β} except
at finitely many points z j of S.

Proof. To find In we apply the residue theorem to

Jn+1 ≡ lim
R→∞

∮
γ

zn+1 f (z) dz,

where z = x + iy and the contour γ is depicted in Figure 1. Using the properties of
f (x) we see that

Jn+1 = In+1 −
∫ ∞

−∞
(x + iβ)n+1 f (x) dx,

and hence that

(n + 1)In = −2π

β

∑
j

h j Res(zn+1 f (z), z j ) −
n−1∑
m=0

(
n + 1

m

)
(iβ)n−m Im. (2)

Here Res(g(z), z j ) denotes the residue of g(z) at the singular point z = z j , and h j

is one or one-half depending on whether z j is inside γ or lies on γ , respectively.
When n = 0, expression (2) contains only the sum of residues. Using this recurrence
relation, In can therefore be expressed entirely as sums of residues of zm+1 f (z) with
m = 0, . . . , n.

R−R

β

x

y

γ

Figure 1. Contour used in the proof of Theorem 1.

Exponential and hyperbolic functions have imaginary periods but not real periods,
which means that they exhibit properties (i) and (iii) and can therefore appear as terms
in the formula for f (x), provided that f (x) also shows property (ii). We illustrate the
method by using it to compute integrals of the form
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In,m,p =
∫ ∞

−∞

xn sinhm x dx

(a + cosh x)p
(a ∈ R; n, m, p ∈ {0, 1, . . . }; p > m).

Such integrals arise in the stability analysis of solitary wave solutions of certain equa-
tions with mixed nonlinearities [3]. We first consider I2,0,1, which Mathematica eval-
uates in terms of the polylogarithm function and [1] gives in a simpler form, but only
when |a| < 1. In this case β = 2π and as f (x) is even, I1 = 0. Applying (2) with first
n = 0 and then n = 2 gives

I2,0,1 = −1

3

∑
j

h j

{
4π2 Res

(
z

a + cosh z
, z j

)
+ Res

(
z3

a + cosh z
, z j

)}
.

When |a| �= 1 the singular points are all simple poles, so the relevant residues are
z j cosech z j and z3

j cosech z j , respectively. When |a| < 1, the poles are at (π ± t)i ,
where t = cos−1 a. This leads to

I2,0,1 = 2
3 (π

2 − t2)t cosec t,

which is in agreement with result 3 of [1, sec. 3.531]. If a > 1 the poles are at ±τ + π i ,
where τ = cosh−1 |a|, and if a < −1 the poles are on γ at ±τ and ±τ + 2π i . After
also obtaining the results when |a| = 1, we complete the evaluation of I2,0,1 for the
remaining values of a:

I2,0,1 =
⎧⎨
⎩

2
3 (π

2 + τ 2)τ cosech τ if a ≥ 1,

2
3 (2π2 − τ 2)τ cosech τ if a ≤ −1,

where τ cosech τ is taken to be 1 when |a| = 1. In [1, sec. 3.533] there is an expression
for In,m,m+1 for m = 1 but not for larger values of m. For cases where n ≥ 2 and the
integrand is even Mathematica gives expressions (involving polylogarithms and the
Appell hypergeometric function) that it is unable to simplify. Using our method, we
have no difficulty obtaining results in terms of elementary functions for any allowed
m, n, and p. For example, we find that if |a| < 1,

I2,2,3 = 1
3

{[
6 + (π2 − t2) cosec2 t

]
t − (π2 − 3t2) cot t

}
cosec t , t = cos−1 a.
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