
Growth rate of transverse instabilities of solitary pulse solutions to a family of
modified Zakharov-Kuznetsov equations

Nongluk Hongsit a, Michael A. Allen b,∗, George Rowlands c

aMathematics Department,
bPhysics Department, Mahidol University, Rama 6 Road, Bangkok 10400 Thailand

cDepartment of Physics, University of Warwick, Coventry, CV4 7AL, UK

Abstract

Using the small-k expansion method, we obtain a closed-form expression for the growth rate of long-wavelength transverse
instabilities of solitary pulse solutions to a modified Zakharov-Kuznetsov equation with a nonlinearity of the form (Aup +Bu2p)ux.
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1. Introduction

The Korteweg-de Vries (KdV) equation and its numerous
generalizations model weakly nonlinear waves in a wide
variety of media (see Ref. [1] for a survey). Here we will be
considering one family of such generalizations which takes
the form of a modified Zakharov-Kuznetsov (ZK) equation,

ut + (Aup + Bu2p)ux + C∇2ux = 0, (p > 0), (1)

where the subscripts denote partial differentiation and A 6=
0, B, and C 6= 0 are real constants. Equation (1) reduces to
the original ZK equation when p = 1 and B = 0. The ZK
equation, first obtained as a description of weakly nonlinear
ion-acoustic modes in a strongly magnetized plasma, is of
particular interest as it is the simplest equation that admits
cylindrical and spherical solitary wave solutions in addition
to the more familiar planar KdV soliton solutions [2]. A
number of ‘modified’ ZK equations, most of which can be
written in the form of (1), have also been derived [3–7].
To distinguish between them, we refer to a modified ZK
equation containing the term (Aup + Buq)ux as the (p, q)-
mZK equation.

ZK-type equations admit planar solitary pulse solutions
(independent of y, z) which are stable to perturbations in
the direction of propagation provided that 0 < p, q < 4 [8].
However, these solutions are unstable with respect to long-
wavelength transverse perturbations, and the perturbed
planar solitary pulses evolve into cylindrical or spherical
solitary pulses [9,10]. The growth rate of long-wavelength
transverse instabilities has been determined for ZK-type
equations with a single nonlinearity for the cases p =
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1, 2, 1/2 [11–13], and more recently also for the (1, 2)- and
( 1
2 , 1)-mZK equations [14,15]. In this paper we obtain the

corresponding growth rate for the (p, 2p)-mZK equation.

2. Solitary pulse solutions

To simplify the analysis we rescale (1) using

u′ =
u

|A|1/p
, t′ =

|A|3t√
|C|

, (x′, y′, z′) =
|A|√
|C|

(x, y, z),

which after dropping the primes gives

ut + (σ
A
up + Bu2p)ux + σ

C
∇2ux = 0, (2)

where σ
A
≡ sgn(A) and σ

C
≡ sgn(C). This has plane soli-

tary pulse solutions when σ
C
B > 0 or B = 0, σ

C
= 1. The

solutions obtained in Ref. [16] can be written in the simpler
form

u(x, t) =
(

σ
A
σ

C
β

α + cosh η(x− V t)

)1/p

(3)

where η is a free real parameter, V = σ
C
η2/p2,

β = |V |(p + 1)(p + 2)α,

α =

√
2p + 1

2p + 1 + BV (p + 1)(p + 2)2
.

If σ
A
σ

C
= −1, it can be seen that a further condition for

the existence of solitary pulses of the form (3) is that p is
rational and has an odd numerator.

Before performing the stability analysis, we can simplify
our system further by transforming (2) to a frame moving
at speed V along the x-axis and then making the change of
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variables u′ = η−2/pu, (t′, x′, y′, z′) = η(η2t, x, y, z), B′ =
η2B. Dropping the primes once again and multiplying by
σ

C
leaves the (p, 2p)-mZK equation in the form

σ
C
ut +

(
σ
A
σ

C
up + σ

C
Bu2p − 1

p2

)
ux +∇2ux = 0, (4)

and after replacing V by σ
C
/p2 in the definitions of α and

β, the plane solitary pulse solution reduces to

u0(x) =
(

σ
A
σ

C
β

α + coshx

)1/p

. (5)

3. Growth rate of small-k instabilities

To determine the growth rate of long-wavelength trans-
verse instabilities of wavenumber k we use the small-k
method [17,1]. We proceed by writing

u(x, y, z, t) = u0(x) + εφ(x) eiky+γt, (6)

where γ is the growth rate of the perturbation εφ(x) eiky,
and ε � k2. Without loss of generality we have taken the
transverse perturbation to be in the y-direction. Substitut-
ing (6) into (4) and linearizing with respect to ε, we obtain

d
dx

Lφ = −σ
C
γφ + k2 dφ

dx
, (7)

where

L ≡ d2

dx2
+ σ

A
σ

C
up

0 + σ
C
Bu2p

0 − 1
p2

.

We expand φ and γ as

φ = φ0 + kφ1 + k2φ2 + . . . , (8)

γ = kγ1 + k2γ2 + . . . , (9)

and substitute (8) and (9) into (7). Equating ascending
powers of k in the resulting equation leads to a series of
equations that are used to find the φi and then the γi.

At lowest order we have

d
dx

Lφ0 = 0,

which has the solution φ0 = u0x by virtue of the x-direction
translational invariance of the unperturbed solution. Inte-
grating the equation obtained at first order in k gives

Lφ1 = −σ
C
γ1u0. (10)

In previous studies involving ZK-type equations, φ1 is de-
termined by applying the L−1 operator [18]. This procedure
is somewhat involved as it requires the evaluation of some
non-trivial integrals. Here, given the solutions for φ1 ob-
tained for specific ZK-type equations elsewhere, we instead
assume that φ1 can be written as a linear sum of xu0x, u0

and um
0 , where m is to be determined. From the definition

of L and using the fact that Lu0x = 0 we have

L(xu0x) = 2u0xx, (11)

L(u0) = u0xx + σ
A
σ

C
up+1

0 + σ
C
Bu2p+1

0 − u0

p2
, (12)

L(um
0 ) = mum−1

0 u0xx + m(m− 1)um−2
0 u2

0x + σ
A
σ

C
up+m

0

+ σ
C
Bu2p+m

0 − um
0

p2
. (13)

Since u0 is a solution of (4), we have

u0xxx =
(

1
p2
− σ

A
σ

C
up

0 − σ
C
Bu2p

0

)
u0x

which on integrating gives

u0xx =
u0

p2
− σ

A
σ

C

p + 1
up+1

0 − σ
C
B

2p + 1
u2p+1

0 . (14)

Multiplying (14) by 2u0x and integrating again yields

u2
0x =

u2
0

p2
− 2σ

A
σ

C
up+2

0

(p + 1)(p + 2)
− σ

C
Bu2p+2

0

(2p + 1)(p + 1)
. (15)

Hence we see that the right-hand sides of (11–13) can be
written in terms of powers of u0, and to minimize the num-
ber of different powers we must choose m = p+1. We then
find that

L(up+1
0 ) =

p + 2
p

up+1
0 − 2σ

A
σ

C
p

p + 2
u2p+1

0 .

Matching coefficients of the linear sum operated on by L
with the right-hand side of (10) it is then straightforward
to show that

φ1 = −σ
C
p2γ1

2

(
xu0x +

1 + α2

p
u0 +

σ
A
(p + 2)α2B

p(2p + 1)
up+1

0

)
.

(16)

To find the first-order growth rate γ1, we must consider
the equation obtained at second order in k,

d
dx

Lφ2 = −σ
C
γ2φ0 − σ

C
γ1φ1 + φ0x. (17)

However, we do not need to find φ2. As in Ref. [15], we in-
stead first multiply (17) by u0 and integrate over all x. The
left-hand side can be seen to equal zero after integrating by
parts and using the self-adjoint property of L and the fact
that Lφ0 = 0. The first term on the right-hand side also
vanishes as the integrand is odd and we are left with

σ
C
γ1 〈φ1u0〉 = 〈φ0xu0〉

where 〈.〉 is the integral over all x. Using (16) and the results
〈u0u0xx〉 = −

〈
u2

0x

〉
and 〈xu0u0x〉 = − 1

2

〈
u2

0

〉
we finally

obtain

γ2
1 =

4
〈
u2

0x

〉
s

p(2(1 + α2)− p)
〈
u2

0

〉
s
+

2σ
A
p(p + 2)α2B

2p + 1
〈up+2

0 〉s
(18)

where for later convenience we have scaled the integrals,
writing 〈.〉s ≡ 〈.〉 /(2β)2/p. Notice that since sgn(up+2

0 ) =

2



σ
A
σ

C
and if B 6= 0, σ

C
B > 0, the second term in the de-

nominator of (18) is never negative. As α ≥ 1, it is only
possible for the denominator to be zero overall if p ≥ 4 in
which case the solitary pulse solution is already unstable
in the x-direction.

Using (5) the scaled integrals can be obtained in closed
form with the help of Mathematica after making the sub-
stitution w = cosh x. We obtain

〈
u2

0

〉
s
=

Γ2( 1
p )H1( 1

p , 1
p )− 2αΓ2( 1

2 + 1
p )H3( 1

2 + 1
p , 1

2 + 1
p )

2Γ( 2
p )

,

(19)

〈up+2
0 〉s =

σ
A
σ

C
β

Γ(1 + 2
p )

[
Γ2( 1

2 + 1
p )H1( 1

2 + 1
p , 1

2 + 1
p )

− 2αΓ2(1 + 1
p )H3(1 + 1

p , 1 + 1
p )

]
, (20)

〈
u2

0x

〉
s
=

1
p2Γ(2 + 2

p )

[
Γ(1 + 1

p )Γ( 1
p )H1(1 + 1

p , 1
p )

− 2αΓ( 1
2 + 1

p )Γ( 3
2 + 1

p )H3( 1
2 + 1

p , 3
2 + 1

p )
]
, (21)

in which Hn(a, b) ≡ 2F1(a, b; n
2 ;α2) where 2F1 is the hy-

pergeometric function. The rather complicated expression
we have obtained for the first order growth rate, γ1, simpli-
fies in the cases p = 1 and p = 1/2 and is in agreement with
the results obtained in Refs. [14] and [15] for the (1, 2)-mZK
and ( 1

2 , 1)-mZK equations, respectively.
When α2 = 1, which corresponds to B = 0 and hence the

generalization of the ZK equation with a single nonlinear
term, (18) reduces to

γ2
1 =

4
〈
u2

0x

〉
s

p(4− p)
〈
u2

0

〉
s

(22)

and (19) and (21) can be simplified to give

〈
u2

0

〉
s
=

√
πΓ( 1

2 −
2
p )

2Γ( 2
p )

[
Γ2( 1

p )

Γ2( 1
2 −

1
p )
−

Γ2( 1
2 + 1

p )

Γ2(1− 1
p )

]
,

〈
u2

0x

〉
s
=

[
Γ( 1

p )Γ(1 + 1
p )

Γ( 1
2 −

1
p )Γ(− 1

2 −
1
p )
−

Γ( 1
2 + 1

p )Γ( 3
2 + 1

p )

Γ(− 1
p )Γ(1− 1

p )

]

×
√

πΓ(− 1
2 −

2
p )

p2Γ(2 + 2
p )

.

Putting p = 1, 2, 1/2 in (22) gives values of γ2
1 of 4/15,

4/3, and 64/63, respectively. After allowing for the different
scalings these agree with the results in Refs. [11–13]. As
p → 4, the scaled integrals remain finite with the result
that the growth rate diverges. This coincides with the onset
of instability of the pulse with respect to perturbations in
the direction of propagation.

4. Discussion

The (p, 2p)-mZK equation appears to be the most gen-
eral form of a modified ZK equation for which an explicit
expression for the first order growth rate can be obtained.
In the case of the (p, q)-mZK equation (or generalizations
with more nonlinearities, as have been obtained in Ref. [7])
there are no closed-form expressions for the pulse solution.
Furthermore, with such generalizations the cancellations of
powers of u0 in L(um

0 ) that allowed us to find φ1 using the
straightforward technique given here do not occur. Never-
theless, this approach should be applicable to obtaining the
transverse instability growth rate of other families of equa-
tions with more than one spatial dimension whose solitary
pulse solutions are known.
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