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Abstract. We determine the growth rate of linear instabilities resulting from long-
wavelength transverse perturbations applied to periodic nonlinear wave solutions to
the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation which
governs weakly nonlinear waves in a strongly magnetized cold-ion plasma whose
electron distribution is given by two Maxwellians at slightly different temperatures.
To obtain the growth rate it is necessary to evaluate non-trivial integrals whose
number is kept to a minimum by using recursion relations. It is shown that a key
instance of one such relation cannot be used for classes of solution whose minimum
value is zero, and an additional integral must be evaluated explicitly instead. The
SKdVZK equation contains two nonlinear terms whose ratio b increases as the
electron distribution becomes increasingly flat-topped. As b and hence the deviation
from electron isothermality increases, it is found that for cnoidal wave solutions
that travel faster than long-wavelength linear waves, there is a more pronounced
variation of the growth rate with the angle θ at which the perturbation is applied.
Solutions whose minimum values are zero and which travel slower than long-
wavelength linear waves are found, at first order, to be stable to perpendicular
perturbations and have a relatively narrow range of θ for which the first-order
growth rate is not zero.

1. Introduction
In Part 1 (Allen et al. 2006) we considered solitary wave solutions of a modified
version of the Zakharov–Kuznetsov (ZK) equation which, in a frame moving at
speed V above the speed of long-wavelength linear waves, takes the form

ut + (u + bu1/2 − V )ux + ∇2ux = 0 (1.1)

where the subscripts denote derivatives.We referred to this equation as the Schamel-
Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation as it contains both
the quadratic nonlinearity of the KdV equation and the half-order nonlinearity of
the Schamel equation. The equation governs weakly nonlinear ion-acoustic waves
in a plasma permeated by a strong uniform magnetic field in the x-direction. The
plasma contains cold ions and two populations of hot electrons, one free and the
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other trapped by the wave potential, whose effective temperatures differ slightly.
In (1.1) u is proportional to the electrostatic potential, and b = (1 − Tef/Tet)/

√
π

where Tef and Tet are the effective temperatures of the free and trapped electrons,
respectively. As b increases, the electron distribution becomes less peaked. A flat-
topped distribution is in accordance with numerical simulations and experimental
observations of collisionless plasmas (Schamel 1973). For further background to the
physical basis and applicability of the SKdVZK and related equations, reference
should be made to Part 1.
The existence of planar solitary wave solutions to the SKdVZK equation and

their stability to transverse perturbations were addressed in Part 1. In this paper
we turn to the study of planar cnoidal wave solutions to the equation. In Sec. 2 we
show that a number of families of cnoidal wave solutions to the one-dimensional
form of (1.1) exist, but not all can be expressed in closed form. Linear stability
analysis of periodic solutions of the SKdVZK equation with respect to transverse
perturbations is carried out in Sec. 3. Such an analysis has been carried out on
cnoidal wave solutions of the ZK and SZK equations which contain single quadratic
and half-order nonlinearities, respectively (Infeld 1985; Munro and Parkes 1999).
However, as far as we are aware, such a calculation has not been performed before
on an equation containing two nonlinear terms. The stability analysis leads to a
nonlinear dispersion relation in the form of a cubic equation whose coefficients are
finite-part integrals involving the unperturbed solution and its derivative. As the
solutions contain elliptic functions the integrals are non-trivial. Recursion relations
between the integrals are derived in order that only the simplest finite integrals
need to be evaluated directly. For some types of solution it is shown that one
instance of a recursion relation cannot be used and an extra integral must be found
directly. In Sec. 4 we examine how the first-order coefficient of the growth rate
found from the nonlinear dispersion relation depends on the type of cnoidal wave,
the angle at which the perturbation is applied and b. Our conclusions are presented
in the final section.

2. Cnoidal wave solutions
To look for planar cnoidal wave solutions of permanent form travelling at speed V
above the long-wavelength linear wave speed we drop the t, y and z dependences in
(1.1). Integrating once then gives

uxx =
C

2
+ V u − 2

3
bu3/2 − 1

2
u2, (2.1)

and multiplying by 2ux and integrating once more yields

u2
x = C0 + Cu + V u2 − 8

15
bu5/2 − 1

3
u3 (2.2)

where C0 and C are integration constants. Although from phase plane analysis it is
clear that a number of families of periodic nonlinear waves exist, only when C0 = 0
can closed-form solutions be obtained in general. Sketches of (2.2) for the various
cases leading to periodic solutions when C0 = 0 are shown in Fig. 1.
After introducing the variable r =

√
u, (2.2) with C0 ≡ 0 reduces to

4r2
x = g(r) ≡ h(r) + C, h(r) ≡ V r2 − 8b

15
r3 − 1

3
r4. (2.3)
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Figure 1. (u, u2
x)-sketches of (2.2) with C0 = 0 showing the existence of families of periodic

wave solutions: (a) C < 0, V > 0 or b < 0 (or both); (b) C > 0; (c) C > 0 for some V < 0
and b < 0.

Figure 2. (r, r2
x)-sketches of (2.3) where solid, dashed and dotted curves give rise to solitary

wave, periodic nonlinear wave and constant (linear limit) solutions, respectively: (a) V > 0,
b > 0; (b) V > 0, b < 0; (c) −6b2/25 < V < 0, b > 0; (d) −6b2/25 < V < 0, b < 0.

Possible forms of g(r) for various V , b and C are sketched in Fig. 2. The u1/2 term
that appears in (1.1) must be interpreted as the positive square root and as a result
we must restrict solutions of (2.3) to r � 0. In view of this, at first sight it would
appear that nonlinear wave solutions to (2.3) that cross the line r = 0 with positive
r2
x would have to be discarded. However, since u2

x = r2g(r), the r � 0 part of such
a solution forms a complete closed loop that touches the origin in the (u � 0, ux)-
plane, as can be seen to occur in Figs 1(b) and 1(c), and hence corresponds to a
nonlinear wave solution with a minimum value of zero. Although for such solutions
in the (r, rx)-plane rx jumps from a negative to an equal and opposite positive
value at r = 0, it is easily shown that u and its derivatives are continuous there.
The jump in the solution in the (r, rx)-plane means that the solutions are most
simply expressed as functions extended by periodicity. Such solutions have already
been categorized for the Schamel equation (which contains the single half-order
nonlinearity) in O’Keir and Parkes (1997). Schamel (1972) described them for the
current equation but in the following they are presented in a more unified form.
The quartic g(r) will always have a stationary point at r = 0 and also at

r± = ±

√(
3b

5

)2

+
3V

2
− 3b

5
(2.4)
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provided that V > −6b2/25. From the sketches of g(r) in Fig. 2 it is apparent that
if r+ is real and positive, nonlinear wave solutions will only occur if C > −h(r+)
and the linear wave limit corresponds to C = −h(r+).
If g(r) has four real roots, r1 < r2 < r3 < r4, then solving (2.3) yields the cnoidal

wave solution

u(x) = [r(x)]2 =
(

r4 + r1ρ sn2(η(x − x0)|m)
1 + ρ sn2(η(x − x0)|m)

)2

, (2.5)

where

ρ ≡ r4 − r3

r3 − r1
, m ≡ r2 − r1

r4 − r2
ρ, η ≡

√
(r4 − r2)(r3 − r1)

48
,

and x0 is an arbitrary phase. We will refer to this class of solution as being of type I.
Note that, when V > 0, in the soliton limit c = 0 we have r3 = r2 = 0 and (2.5)
then reduces to the conventional solitary wave solution given in Part 1.
When b < 0, it can be seen from Figs 2(b) and 2(d) that there are periodic wave

solutions corresponding to a g(r) with just two real roots for−h(r+) < C < −h(r−)
when V > 0, and for −h(r+) < C < 0 when −6b2/25 < V < 0. If the two real
roots are ru and rl, with ru > rl, and the remaining two complex conjugate roots
are α ± iβ, then solving (2.3) in this case gives what we call the type II solution,

u(x) = [r(x)]2 =
(

(Arl + Bru) − (Arl − Bru) cn(η̄(x − x0)|m̄)
(A + B) − (A − B) cn(η̄(x − x0)|m̄)

)2

, (2.6)

where

A =
√

(ru − α)2 + β2, B =
√

(rl − α)2 + β2,

and

m̄ =
(ru − rl)2 − (A − B)2

4AB
, η̄ =

√
AB

12
.

We now turn our attention to the solutions written as periodically extended
functions. For V > 0 these occur when c > 0. As in these cases there are only two
real roots, these solutions take a similar form to (2.6). However, owing to the jump
in the (r, rx)-plane they must be written in the form

u(x) =
(

(Arl + Bru) − (Arl − Bru) cn(η̄x̌(χ̄/η̄)|m̄)
(A + B) − (A − B) cn(η̄x̌(χ̄/η̄)|m̄)

)2

,

χ̄ = cn−1

(
Arl + Bru
Arl − Bru

)
,

(2.7)

where

x̌(p) ≡ (x − x0 + p mod 2p) − p.

These solutions have a period of 2χ̄/η̄ and for a given value of V and b have a larger
amplitude than the solitary wave; we call these type IIpe solutions. When b = 0
they reduce to an ordinary KdV equation cnoidal wave solution with a minimum
value of zero.
From Figs 2(c) and 2(d) it is clear that, when V < 0, smaller amplitude solutions

that touch u = 0 are also possible. When there are two real roots (2.7) still applies,
while if b > 0 and there are four real roots, what we will refer to as the type Ipe
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solution results. This type of solution is similar to (2.5) but must be written as

u(x) =
(

r4 + r1ρ sn2(ηx̌(χ/η)|m)
1 + ρ sn2(ηx̌(χ/η)|m)

)2

, χ = sn−1

√
r4

r1ρ
. (2.8)

When there are four real roots and b < 0, the solution which has a minimum value
of zero is the same as the above after making the interchanges r4 ↔ r2 and r3 ↔ r1.

3. Linear stability analysis
By using the small-k expansion method (Rowlands 1969; Infeld 1985; Infeld and
Rowlands 2000), we now investigate the linear stability of periodic waves to long-
wavelength perturbations with wavevector k(cos θ, sin θ cos ϕ, sin θ sinϕ) where θ is
the angle between the direction of the wavevector and the x-axis, and ϕ is the
azimuthal angle. We start from the ansatz

u = u0(x) + εΦ(x) exp(ik(x cos θ + y sin θ cos ϕ + z sin θ sin ϕ) − iωt), (3.1)

where u0(x) is a periodic solution to (1.1), ε � 1 and the eigenfunction Φ(x) must
have the same period as u0(x). Substituting (3.1) into (1.1) and linearizing with
respect to ε gives

d

dx
LΦ = iωΦ − ik cos θ QΦ − 3ik cos θ Φxx + k2(1 + 2 cos2 θ)Φx + ik3 cos θ Φ, (3.2)

where

L ≡ d2

dx2
+ Q, Q ≡ u0 + bu1/2

0 − V,

and Φ and ω are written as the expansions,

Φ = Φ0 + kΦ1 + · · · , (3.3)

ω = ω1k + ω2k
2 + · · · . (3.4)

For the remainder of the calculation we follow a similar procedure to that first
given in Parkes (1993). After substituting (3.3) and (3.4) into (3.2) and equating
coefficients of kn we obtain the sequence of equations

(LΦn)x = Rnx(x) (3.5)

in which the expressions for Rnx are of the same form as in Part 1 after replacing γj

by −iωj . Since Lu0x = 0, the solution to LΦn = Rn +Bn, where Bn are integration
constants obtained on integrating (3.5), is

Φn = u0xvn, (3.6)

where

vnx =
1

u2
0x

{
An +

∫ x

(Rn(x′) + Bn)u0x(x′) dx′
}

(3.7)

and An are additional constants. On integrating (3.7), secular (non-periodic) terms
will occur in vn. To remove these we must insist that

〈vnx〉 = 0, (3.8)

where

〈f〉 = Fp
1
λ

∫ λ

0

f(x) dx, (3.9)
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λ is the period of u0 and Fp stands for Hadamard’s finite part (Zemanian 1965).
Equation (3.8) provides a relation between An and Bn which can later be used to
help eliminate these constants.
To lowest order in k we have (LΦ0)x = 0. As a result of the translational invari-

ance of u0, this has a solution proportional to u0x. This result can be obtained
more explicitly, as is done in Munro and Parkes (1999), by using the consistency
conditions 〈v0x〉 = 0, 〈(LΦ1)x〉 = 0 and 〈u0(LΦ1)x〉 = 0 to show that v0x = 0. Without
loss of generality, we choose a unit constant of proportionality (which corresponds
to setting v0 = 1) and we are left with

Φ0 = u0x. (3.10)

Integrating the first-order equation gives

LΦ1 = iω1u0 − 2i cos θ u0xx + B1, (3.11)

and after using (3.7) one obtains

v1x =
1

u2
0x

(
A1 +

iω1u
2
0

2
− i cos θ u2

0x + B1u0

)
. (3.12)

Then applying (3.8) results in the relation

A1β0 +
iω1β2

2
− i cos θ + B1β1 = 0, (3.13)

in which we have introduced the quantities

βs ≡
〈

us
0

u2
0x

〉
. (3.14)

After using (3.6) and (3.11), the second-order equation may be written as

(LΦ2)x = iω2u0x+iω1u0xv1+u0xx+ω1 cos θ u0−iB1 cos θ−2i cos θ(u0xv1)xx. (3.15)

To obtain ω1 it is not necessary to evaluate Φ2. Instead, we first apply the finite-
part averaging operation 〈·〉 to (3.15). After using partial integration to show that
〈u0xv1〉 = −〈u0v1x〉, and by virtue of the periodicity of Φ2 (which implies that
〈(LΦ2)x〉 = 0), we obtain

−iω1〈u0v1x〉 + ω1 cos θ α1 − iB1 cos θ = 0, (3.16)

where we have defined

αs ≡ 〈us
0〉. (3.17)

We then multiply (3.15) by u0 and apply 〈·〉. The left-hand side can be shown to be
zero by integrating by parts and then using the self-adjoint property of L and the
fact that Lu0x = 0. This leaves, after further manipulation via partial integration,

− iω1

2
〈u2

0v1x〉 − 〈u2
0x〉 + ω1 cos θ α2 − iB1 cos θ α1 + i cos θ 〈u2

0xv1x〉 = 0. (3.18)

From (3.12) we can obtain

〈u0v1x〉 = A1β1 +
iω1β3

2
− i cos θ α1 + B1β2, (3.19a)

〈u2
0v1x〉 = A1β2 +

iω1β4

2
− i cos θ α2 + B1β3, (3.19b)
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〈u2
0xv1x〉 = A1 +

iω1α2

2
− i cos θ 〈u2

0x〉 + B1α1, (3.19c)

and after replacing u in (2.2) by u0 and applying 〈·〉 we have

〈u2
0x〉 = Cα1 + V α2 − 8b

15
α5/2 − 1

3
α3.

Substituting (3.19) into (3.16) and (3.18) and then eliminating A1 and B1 from
these two equations and (3.13) leaves the following equation for ω1:

a0 + a1ω1 + a2ω
2
1 + a3ω

3
1 = 0, (3.20)

where

a0 = (β0〈u2
0x〉 sin2 θ + cos2 θ) cos θ,

a1 = (β0β2 − β2
1)〈u2

0x〉 sin2 θ,

a2 = (β1β3 − 3
4β2

2 − 1
4β0β4) cos θ,

a3 = 1
4 (β2

1β4 + β3
2 + β0β

2
3 − β0β2β4 − 2β1β2β3).

Owing to the fact that u0x is zero at some points, the direct evaluation of the βs

would require a finite-part calculation. This can be avoided by instead expressing
these quantities in terms of the αs. To accomplish this, we require a number of
recursion relations. The first of these is obtained by multiplying (2.1) by us

0/u2
0x,

applying 〈·〉 and then simplifying the left-hand side using partial integration. This
yields

sαs−1 =
C

2
βs + V βs+1 − 2b

3
βs+3/2 − 1

2
βs+2. (3.21)

Applying the same procedure to (2.2) and then replacing s by s − 1 gives

αs−1 = Cβs + V βs+1 − 8b

15
βs+3/2 − 1

3
βs+2. (3.22)

Eliminating βs+3/2 from the above two equations gives

9Cβs + 3V βs+1 + βs+2 = 3(5 − 4s)αs−1, (3.23)

and putting the values s = 0, 1, 2 into (3.23) generates the following three equations
involving the required βs:

9Cβ0 + 3V β1 + β2 = −15α−1, (3.24a)

9Cβ1 + 3V β2 + β3 = 3, (3.24b)

9Cβ2 + 3V β3 + β4 = −α1. (3.24c)

A further two equations for the βs are found by first eliminating βs+2 from (3.21)
and (3.22) to give

30Cβs + 15V βs+1 − 4bβs+3/2 = 15(3 − 2s)αs−1. (3.25)

Putting s = 1 and s = 3/2 into this equation and eliminating β5/2, and then using
the resulting equation and (3.25) with s = 0 to eliminate β3/2, gives

15C2β0 + 15V Cβ1 +
15V 2β2

4
− 4b2β3

15
=

45
2

Cα−1 +
15V

4
. (3.26)
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Eliminating β7/2 and β5/2 from the equations obtained from (3.25) with s = 1, 2, 5/2
yields

15C2β1 + 15V Cβ2 +
15V 2β3

4
− 4b2β4

15
=

15
2

C − 2bα3/2 − 15V α1

4
. (3.27)

Using (3.24), (3.26) and (3.27), all the βs for s = 0, . . . , 4 can then be expressed in
terms of α1, α−1 and α3/2.
We now turn to the evaluation of αs. A recursion relation involving only αs

can be obtained by multiplying (2.1) by us
0 and (2.2) by sus−1

0 , adding and then
averaging. If u0 > 0 or if s � 0, the average value of us

0 will be finite and equal to
αs and we may then write(

1
2

+
s

3

)
αs+2 =

(
1
2

+ s

)
Cαs + (1 + s)V αs+1 −

(
2
3

+
8s

15

)
bαs+3/2. (3.28)

However, if u0(x) is zero at some values of x, as is the case for the type Ipe and IIpe
solutions, and s < 0, the average of us

0 will no longer be finite, and in cases where the
coefficient of an infinite integral is zero, (3.28) has to be modified. Before continuing,
it should be noted that, in contrast, (3.21) is always valid for s = 0 since for this
value of s the left-hand side originates from 〈u0xx/u2

0x〉 which is identically zero.
From (3.28) it is evident that we will have to evaluate at least two of the αs

directly. The simplest to find, owing to the fact that the periodic wave solutions are
of the form u0(x) = [r(x)]2, are α1/2 and α1. The evaluation of these integrals for
type I, IIpe and Ipe solutions is given in Appendix A. To determine the βs and 〈u2

0x〉
we also require α−1, α3/2, α2, α5/2 and α3. Putting s = −1 in (3.28) presents no
problem as the only coefficient that is zero is multiplying a term originating from
a finite integral. Thus we have

α−1 = − 1
3C

(
α1 +

4bα1/2

15

)
.

To find α3/2 we need to use s = −1/2. In this case (3.28) must be re-written in the
form

α3/2 =
3V α1/2

2
− 6bα1

5
+ lim

s→−1/2
Fp

3(1 + 2s)
2λ

∫ λ

0

us
0 dx. (3.29)

For type I solutions, the final term on the right-hand side is zero. For the type Ipe
and IIpe solutions, the integral in (3.29) is infinite and the finite part would have to
be found numerically. In such cases α3/2 needs to be obtained directly, as is done
in Appendix A. The remaining αs can be found in a straightforward manner by
putting s = 0, 1

2 and 1 into (3.28) which gives, respectively,

α2 = C + 2V α1 −
4bα3/2

3
,

α5/2 =
3Cα1/2

2
+

9V α3/2

4
− 21bα2

15
,

α3 =
9C

5
α1 +

12V

5
α2 −

36bα5/2

25
.

The values of αs corresponding to finite integrals obtained using the procedure out-
lined were checked by numerical integration for specific values of the parameters.
The numerical values of the remaining quantities, namely, α−1 for the periodically
extended solutions and the βs, for which the finite-part operation is not redundant,
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Figure 3. Plots of γ1 against θ for type I solutions with V = 4 and c taking the values 0
(top curves), −0.25, −0.5, −0.75 and −0.99 (lowest curves): (a) b = 0; (b) b = 2; (c) b = 4;
(d) b = 50.

were checked using a finite-part numerical integration technique (O’Keir 1993;
Phibanchon 2006).

4. Growth rate of instabilities
Having obtained the three roots to the nonlinear dispersion relation (3.20), we
discard the real parts as they are of no importance in the context of stability. The
solution is unstable if two of the roots are complex conjugates. If ω1 is one of these
roots, the first-order growth rate of the instability is given by

γ ≡ γ1k ≡ |Imω1|k.

When examining the dependence of the growth rate on the type of solution and
the direction of the perturbation we find it convenient to introduce the parameter
c, a rescaled version of C, defined by

c ≡ C

|h(r+)| , (4.1)

provided that V > −6b2/25. Then, if V > 0, the linear limit corresponds to c = −1
and the soliton limit occurs at c = 0. The type Ipe and IIpe solutions have c > 0. As
in Part 1, we only consider the stability of solutions for which b > 0 as these are
the more physically relevant.
We feel that a plot of γ1 against θ shows the angular dependence of the growth

rate more clearly than the more traditional approach of using a polar plot to depict
the dependence of the real and imaginary parts of ω at all angles. The values of
γ1 for type I solution instabilities as a function of angle for a number of values of
c and b are shown in Fig. 3. For the soliton limit (when c = 0) the growth rate
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Figure 4.Plots of θmax (solid lines), θcrit (dashed lines) and θc (dotted lines) against c: (a) V = 4
with b taking the values 0 (top curves), 2, 4 and 50 (lowest curves); (b) V = −4 with b taking
the values 5 (outermost curves), 10 and 20 (innermost curves).

Figure 5. Plots of γ1m against c: (a) V = 4 with b taking the values 0 (top curves), 2, 4 and
50 (lowest curves)—dots indicate the values of γ1 calculated for solitary wave solutions in
Part 1; (b) V = −4 with b taking the values 5 (top curves), 10 and 20 (lowest curves).

is proportional to sin θ, which is in agreement with the results of Part 1. For the
cnoidal wave solutions (when −1 < c < 0), γ1 is only non-zero above a critical
angle, θcrit, which increases with decreasing c. It is also evident that θmax, the angle
at which the maximum growth rate occurs, differs from 90◦ for cnoidal waves. The
variation of both θmax and θcrit with c is shown in Fig. 4(a). The growth rate is
largest for the soliton limit. From the plot of γ1m, the maximum value of γ1 (the
value when θ = θmax), in Fig. 5(a), it is apparent that there is a rapid variation in
growth rate as c approaches zero. This is not unexpected given that the waveform
period increases rapidly and becomes infinite at the soliton limit, c = 0. Notice that
the results found for the soliton limit are in agreement with the analytical results
given in Part 1 of this study.
In Part 1 it was found that γ1 for solitary waves decreases with increasing b for

a fixed value of η. As is apparent from (2.2) of Part 1, for fixed η, the amplitude
decreases as b increases. However, if the amplitude is fixed (by using the appropriate
value of η in each case) then it is found that γ1 increases with b. Cnoidal waves for
different values of b but with the same amplitude and values ofmwill have different
periods. It therefore seems inappropriate to compare the growth rates in such cases.
Nevertheless, meaningful comparisons can be made on examining the entire growth
rate curve as a function of θ. As can be seen from Figs 3 and 5(a) there is a more
marked variation of the growth rate with θ for angles above θmax as b increases,
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Figure 6. Plots of γ1 against θ for type IIpe and Ipe solutions. In (a)–(c), V = 4 and c takes
the values 0 (leftmost curves), 0.5, 1.0, 1.5 and 2.0 (rightmost curves) and (a) b = 0, (b) b = 4,
(c) b = 50. In (d) V = −4 and c takes the values 50 (top curves), 10 and 1 (lowest curves)
with b = 5 (solid lines), b = 10 (dashed lines) and b = 20 (dotted lines).

and the plots in Fig. 4(a) indicate that θmax deviates from the perpendicular most
of all when b is large. On the other hand, θcrit shows only a slight dependence on b.
We now turn to the stability results for solutions in the form of functions extended

by periodicity. When V > 0 and c is increased above zero, one obtains type IIpe
solutions. It can be seen from Figs 6(a)–(c) that the first-order growth rates of
these solutions are higher than that for the soliton limit at some angles, but this
range of angles decreases with increasing b. In addition to an increasing θcrit with
c, the first-order growth rate for exactly perpendicular perturbations vanishes for
large enough b and c. Evidently the growth rate has a significantly greater angular
dependence than for the type I solutions.
For the stability results we have examined so far, the first-order growth rate is

non-zero for angles just below 90◦. In the case of type Ipe and IIpe solutions when
V < 0 the results in Fig. 6(d) indicate that there is a cut-off angle θc above which γ1

vanishes. Hence such waves are, to first order, stable to perpendicular perturbations.
In addition, the instability occurs over a relatively small range of angles, even for
large values of c. For these types of solution, as is shown in Fig. 5(b), the growth
rate increases monotonically with c, in contrast to the behaviour near the type I to
type IIpe transition. There is no spike in the growth rate at c = 1, the type Ipe–IIpe
transition, since there is no sudden change of period around that point.

5. Conclusions
This paper has dealt with the small-k stability with respect to transverse perturb-
ations of cnoidal wave solutions to the SKdVZK equation which governs strongly
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magnetized plasma with slightly non-isothermal electrons. It was found that the
growth rate of instabilities for ordinary cnoidal waves that travel faster than long-
wavelength linear waves has a stronger angular variation as the distribution of
electrons becomes increasingly flatter than the isothermal Maxwellian. We also
examined a class of solutions that do not occur for equations without a square root
term. These solutions, which are written as functions extended by periodicity, have
a minimum value of zero. This causes difficulties with some instances of recursion
relations used in the determination of the growth rate, and results in it being
necessary to evaluate an additional integral. This type of solution, for the case
when the wave velocity is less than that of long-wavelength linear waves, has, to
first order, a relatively narrow range of perturbation angles at which instability
occurs and is stable to perpendicular perturbations.
The half-integer nonlinear term in the SKdVZK equation was originally intro-

duced by Schamel to model the effect of trapped particles in Bernstein–Greene–
Kruskal (BGK) solutions of the Vlasov–Poisson equation. Hence Part 1 and this
paper are to be viewed as a step towards the more formidable problem of studying
the stability of the BGK modes where trapped particles play a significant role.
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Appendix A. The evaluation of α1/2, α1 and α3/2

For cnoidal wave solutions, α1/2, α1 and α3/2 are elliptic integrals and for their
evaluation we therefore rely heavily on the work of Byrd and Friedman (1954) to
which the result numbers in the following refer.

A.1. Type I solutions

The type I solution as given by (2.5) has a period of 2K(m)/η, where K(m) is the
complete elliptic integral of the first kind. From result 340.01 we obtain

α1/2 = r1 + (r4 − r1)
Π(−ρ|m)

K(m)
, (A 1)

in which Π(n|m) is the complete elliptic integral of the third kind.
Applying result 340.02 to (2.5) yields

α1 =
(r4 − r1)2

2(ρ + 1)(1 + m)

(
ρE(m) + {ρ2 + 2ρ(1 + m) + 3m}Π(−ρ|m)

K(m)
− ρ − m

)

+ r2
1 + 2r1(r4 − r1)

Π(−ρ|m)
K(m)

, (A 2)

where E(m) is the complete elliptic integral of the second kind.

A.2. Type IIpe solutions

After introducing

σ =
A − B

A + B
, σ1 =

Arl − Bru
Arl + Bru

, Īn =
∫ χ̄

0

dX

(1 − σ cn(X |m̄))n
,
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the integrals αn/2 for n = 1, 2, 3 may be written in the form

αn/2 =
1
χ̄

(
Arl − Bru
A − B

)n n∑
p=0

(
n

p

)
(σ/σ1 − 1)pĪp.

From result 341,

Ī1 =
1

1 − σ2

(
Π(−q; φ̄|m̄) +

σ

µ
tan−1[µ sd(χ̄|m̄)]

)
, (A 3)

where q = σ2/(1 − σ2), φ̄ = am(χ̄|m̄), µ =
√

m̄ + q, sd(x|m) ≡ sn(x|m)/dn(x|m),

Ī2 =
{2m̄ − (2m̄ − 1)σ2}Ī1 + σ2E(φ̄|m̄) − {m̄ + (1 − m̄)σ2}χ̄ + Ῡ1

(1 − σ2){m̄ + (1 − m̄)σ2} ,

Ī3 =
3{2m̄ − (2m̄ − 1)σ2}Ī2 + 2m̄F (φ̄|m̄) − {6m̄ − (2m̄ − 1)σ2}Ī1 + Ῡ2

2(1 − σ2){m̄ + (1 − m̄)σ2} ,

where F (φ|m) is the elliptic integral of the first kind, and

Ῡn =
σ3 sn(χ̄|m̄)dn(χ̄|m̄)
(1 − σ cn(χ̄|m̄))n−1

.

A.3. Type Ipe solutions

The αn/2 for n = 1, 2, 3 may be written in the form

αn/2 =
rn
1

χ

n∑
p=0

(
n

p

)
(r4/r1 − 1)pIp,

where

In =
∫ χ

0

dX

(1 + ρ sn2(X |m))n
.

From result 400.01, I1 = Π(−ρ;φ|m), where φ = am(χ|m). Results 336.01 and
336.02 yield

I2 =
σE(φ|m) − (m + ρ)χ + {2ρ(1 + m) + 3m + ρ2}I1 + Υ1

2(1 + ρ)(m + ρ)
, (A 4)

I3 =
mF (φ|m) − 2{ρ(1 + m) + 3m}I1 + 3{2ρ(1 + m) + 3m + ρ2}I2 + Υ2

4(1 + ρ)(m + ρ)
, (A 5)

respectively, where

Υn =
ρ2 sn(χ|m) cn(χ|m)dn(χ|m)

(1 + ρ sn2(χ|m))n
.
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