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1 Thermodynamic Systems

I Thermodynamic system is characterized with equation of
state f (E ,T , ...) = 0, where E is energy (work done/heat) in
Joule, temperature T in Kelvin, and other.

I We are interest thermal processes of the system, i.e., inside
and transfer in/out of the system

I The whole Universe consists of the system (small), its
environment (huge) and the boundary.

I In canonical case, we let only energy E can be transferred in
to/out of the system



2 System of Ideal Gas

I System of ideal gas is characterized by its temperature T ,
pressure P, container volume V , , and the Number N of
molecules inside the container. They satisfy the equation of
state

pV = NkBT , kB = 1.38× 10−23J/K

(kB is Boltzmann constant.) Or in the form

pV = nRT , n =
N

NA
, NA = 6.02× 1023molecule/mol

where NA is Avogadro number, n is molar number of the gas
and R = NAkB = 8.314[J/mol · K ] is the Universal gas
constant.

I For canonical ideal gas system the number is fixed, so that

pV ∝ T

This is displayed as hyperbolic curve on the p-V diagram



I The p-V diagram of ideal gas system

I This diagram is very useful for in studying thermal processes of
the system, since all of them can be explained on this diagram

I We start with constructing mechanical description of the ideal
gas system, from the fundamental level, by determining the
system energy E .

I The ideal gas system consist of moving non-interacting gas
molecules, so that the system energy is the summation of the
kinetic energy of all molecules, by ignoring small gravitational
potential energy.
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I Let us check this picture, by determining motion of one gas
molecule of mass m velocity v in side of cubic volume of side
L→ V = L3. Start from its motion in x-direction

Kx =
1

2
mv2x , px = mvx

I Once it hits the right wall and bounce back with velocity −vx ,
the impulse of this hitting is ∆pX = −2mvx



I The next hitting wait after the duration of ∆t = 2L
vx

, so that
the average hitting force on the right wall will be

F̄x =
−∆px

∆t
=

mv2x
L
→ P̄1 =

F̄x
A

=
mv2x
V

where P̄1 is the average pressure from single molecule. The
average pressure from N molecules will be

P̄ =
m

V

N∑
n=1

v2xn =
mNv̄2x
V

, where v̄2x =
1

N

N∑
n=1

v2xn

v̄2x = v̄2y = v̄2z → v̄2x =
1

3
v̄2 =

1

3
v2rms

P̄ =
mNv2rms

3V
=

N

V

(
1

3
mv2rms

)
→ 1

3
mv2rms = kBT

→ 1

2
mv2rms =

3

2
kBT ”kinetic theory”



I Kinetic theory of ideal gas = kinetic energy any one degree of
freedom of ideal gas molecule equals to thermal energy 1

2kBT

Umon =
3

2
NkBT =

3

2
nRT , Udia =

5

2
NkBT =

5

2
nRT

From kinetic theory we can have vrms = vrms(T ).



I Anyway, we can have molecular velocity distribution from the
following steps of analysis. Let v = (vx , vy , vz) be a molecular
velocity and

v2 = v2x + v2y + v2z → constant

d(v2) = 0 = 2vxdvx + 2vydvy + 2vzdvz

→ vxdvx + vydvy + vz + dvz = 0

Let f (v2) = f (vx)f (vy )f (vz) be a velocity distribution
function, it satisfies

df (v2) = 0 = f ′(vx)dvx [f (vy )f (vz)] + f ′(vy )dvy [(f (vx)f (vz)]

+f ′(vz)dvz [f (vx)f (vy )]

f ′(vx)

f (vx)
dvx +

f ′(vy )

f (vy )
dvy +

f ′(vz)

f (vz)
dvz = 0

From above α(vxdvx + vydvy + vz + dvz = 0) = 0



After addition together, we have(
f ′(vx)

f (vx)
+ αvx

)
dvx +

(
f ′(vy )

f (vy )
+ αvy

)
dvy +

(
f ′(vz)

f (vz)
+ αvz

)
dvz = 0

→ f ′(vx)

f (vx)
+ αvx = 0,

f ′(vy )

f (vy )
+ αvy = 0,

f ′(vz)

f (vz)
+ αvz = 0

Let us determine

f ′(vx)

f (vx)
+ αvx = 0→ d ln f (vx) = −αvxdvx = −1

2
αdv2x

→ ln f (vx)− ln a = −1

2
αv2x → f (vx) = ae−

1
2
αv2

x

→ f (v) = f (vx)f (vy )f (vx) = a3e−
1
2
αv2

?(a, α)→
∫

f (v)d3v = 1 normalization

With an appearance of v2 on the exponent, let us assign for
convenient α = m/kBT = βm, with β = 1/kBT .



Calculate the normalization

1 =

∫
f (vx)dvx = a

∫
dvxe

− 1
2
βmv2

x = a

√
2π

βm

→ a =

√
βm

2π
=

√
m

2πkBT
→ f (vx) =

√
m

2πkBT
e
− mv2

2kBT

f (vx , vy , vz) =

(
m

2πkBT

)3/2

e
− mv2

2kBT

Isotropic velocity space volume in three dimensions in spherical
coordinates d3v = 4πu2du, u = |v | → u2 = v2

f (vx , vy , vx)d3v = 4πv2f (u)du = F (v)dv

F (u) = 4π

√
m

2πkBT
u2e
− mu2

2kBT

F (u) is called Maxwell-Boltzmann speed distribution function.



The average speed (with molecular mass m and molar mass M)

ū =

∫ ∞
0

uF (u)du =

√
8kBT

πm
=

√
8RT

πM

The most probable speed

F ′(umax) = 0→ umax =

√
2kBT

m
=

√
2RT

M

when compared to rms speed urms =
√

3kBT/m =
√

3RT/M.



3 The First Law of Thermodynamics

I Let U be total internal energy of thermodynamic system, its
change ∆U results from heat absorption ∆Q into the system
and work done ∆W by the system, i.e.,

∆U = ∆Q −∆W

I Apply to ideal gas system of N particles

U =
3

2
NkBT =

3

2
nRT → ∆U =

3

2
nR∆T

Determine the work done by the gas in cylindrical pistol
∆W = F∆x = p∆V It is area under curve on p-V diagram



I Thermodynamic processes of ideal gas system, according the
first law
I constant volume (isochoric) process

∆W = 0→ ∆U = ∆Q =
3

2
nR∆T ≡ ncV ∆T

cV =
3

2
R

Molar specific heat at constant volume
I constant pressure (isobaric) process

∆U ≡ ncV ∆T = ∆QP − p∆V ≡ ncP∆T − nR∆T

→ cP = cV + R

Molar specific heat at constant pressure
I constant temperature (isothermal) process

∆U = 0→ ∆Q = ∆W

The ideal heat engine!!!



I Thermodynamic processes of ideal gas system (cont.)
I adiabatic (no heat absorption) process

∆Q = 0→ ∆U = ncV ∆T = −∆W = −p∆V

pV = nRT :→ cV
R

[p∆V + V∆p] = −p∆V

Devide through with pV :→ cV
∆P

p
+ cP

∆V

V
= 0

∆(ln p + γ lnV ) = 0, γ =
cP
cV

∆ ln(pV γ) = 0→ ln pV γ = C , pV γ = C

We do derive adiabatic process equations

pV γ = C → TV γ−1 = C , p1−γT γ = C

I cyclic process, after one cycle of change of state

∆Ucyc = 0→ ∆Qcyc = ∆Wcyc





4 Heat Engines and Refrigerator

I Idea of heat engine is an ideal gas system, contained in a
cylindrical pistol, changes its state in cycle, with
Wout = Wcyc ,Qcyc = QH − QL

I Efficiency

e(%) =
Wcyc

QH
× 100 =

Qcyc

QH
× 100%



I Carnot engine

∆QH = ∆WAB = (p∆V )AB = nRTH

(
∆V

V

)
AB

= nR∆(lnV )AB

QH = nRTH ln
VB

VA
→ QL = nRTL ln

VD

VC

Adiabatic :
VB

VA
=

VC

VD
→ QH +QL = nR(TH−TL) ln(VB/VA)

e(%) =
TH − TL

TH
× 100%



I Otto engine

Q1 = UDA = ncV (TA − TD) = ncVTD(TA/TD − 1)

Q2 = ∆UBC = ncV (TC − TB) = ncVTC (1− TB/TC )

Adiabatic :
TA

TD
=

TB

TC
→ e =

TD − TC

TD
= 1− TC

TD
= 1− rγ−1E

Vol. exp. ratio : rE =
VB

VA
→ e(%) = (1− rγ−1E )× 100%



I Diesel engine

Q1 = ncP(TB − TA), Q2 = ncV (TD − TC )

e =
Q1 + Q2

Q1
= 1− 1

γ

(TC − TD)

(TB − TA)
= 1− 1

γ

VC (pC − pD)

pA(VB − VA)

= 1− 1

γ

(pC/pA − pD/pA)

(VB/VC − VA/VC )
= 1− 1

γ

pC/pA − pD/pA
1/rE − 1/rC



I Diesel engine (cont.)

Adiabatic : pAV
γ
A = pDV

γ
C , pAV

γ
B = pCV

γ
C

pA
pD

=

(
VC

VA

)γ
= rγC ,

pA
pC

=

(
VC

VB

)γ
= rγE

→ e(%) =

(
1− 1

γ

[
r−γE − r−γC

r−1E − r−1C

])
× 100%

I Carnot refrigerator
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I Carnot refrigerator (cont.)

Peformance : P =
Q1

W
=

Q1

Q2 − Q1

Q1 = QL = nRTL ln
VD

VC
, Q2 = QH = nRTH ln

VB

VA

→ P =
TL

TH − TL



5 The Second Law of Thermodynamics

I Missing information from the first law, let us determine a
work in Carnot refrigerator done by Carnot engine

We observe that

lim
TL→0

e(%)→ 100% but lim
TL→0

P → 0 then TL 6= 0

Conclusion: we cannot reach T = 0K , so that we will never
have e(%) = 100% heat engine and P =∞ refrigerator

I How to state this fact in form of physical law with
mathematical expression ?



I Rudolf Clausius (1865) a German physicists was introduced
entropy S to describe direction of transformation of state of
thermal system, which is relate to the change of entropy ∆S ,
by stating that

∆S =
∆Q

T
=

∫
dQ

T
≥ 0

with the conditions
I ∆S = 0 for reversible processes
I ∆S > 0 for irreversible processes

This sets time direction (arrow) of all thermal processes, for
example of free expansion V → 2V in isolate system
(isothermal T )

∆Q = nRT ln 2

→ ∆S = nR ln 2 > 0



I Cyclic process is observed to be reversible, from above

∆Scyc =
∑
cycle

∆Q

T
=

∮
dQ

T
= 0

For example of Carnot cycle

∆SCarnot =
∆QH

TH
+

∆QL

TL
= nR (ln(VB/VA)− ln(VC/VD))

= nR ln

(
VB

VA

VD

VC

)
= nR ln(1) = 0

I Generic cyclic process ∆Scyc = 0 always


