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Particle Waves

Max Plank was proposed the idea of photon as a particle of EM
wave, with energy and momentum of

E =
hc

λ
, p =

E

c
=

h

λ
, E = pc

Louise de Broglie though that if wave can be particle so do particle
can be wave. For a particle with momentum p, its wave should has
a wavelength of

λ =
h

p
− de Broglie ′s wavelength

where h = 6.626× 10−34[J · s] = 4.135× 10−15[eV · s] is Plank’s
constant. (hc = 12.4× 10−7eV ·m) (1.0eV = 1.6× 10−19J)



Example:

An electron is accelerated to get the kinetic energy of 50eV , its de
Broglie wavelength will be

K =
p2

2m
= 50eV 7→ p =

√
2mcK , pc =

√
2mec2K

mec
2 = 0.512MeV 7→ pc = 7.16[keV ] ([p] = eV /c)

7→ λ =
hc

pc
=

12.4× 10−7[eV ·m]

71.6× 103[eV ]
= 0.17× 10−10[m]

= 0.170A



Erwin Schrodinger and his wave mechanics

In his PhD thesis, Erwin Schrodinger want to write wave equation
of particle wave, in order to know its wave function. He started
from free particle with constant momentum p, this corresponds to
monochromatic wave with wavelength λ = h/p. We know its wave
function, for +x propagation we have

ψ(x , t) = Ae ikx−iωt , k =
2π

λ
=

2πp

h
=

p

~
, ~ =

h

2π
(1)

As we know that the wave function will tell us everything about
the wave, and it is also true for the particle wave.
So we can ask the wave function about the energy conservation
between particle and its wave-particle, i.e.,

(Eparticle − Ewave−particle)ψ(x , t) = 0

7→
(

p2

2m
− ~ω

)
ψ(x , t) = 0 (2)

when Ewave−particle = hf = ~ω, ω = 2πf .



Correspondence principle:

From the fact that p = ~k , let us consider

0 =
(
~2k2

2m − ~ω
)
e ikx−iωt

≡
(

1
2m

(
−i~ ∂

∂x

)2 − (i~ ∂
∂t

))
e ikx−iωt

7→ p = −i~ d
dx , E = i~ d

dt (3)

Let us denote H0 = p2

2m , it is the total free particle energy (it is
called Hamiltonian). The particle wave equation will be

H0ψ(x , t) = i~
∂

∂t
ψ(x , t) (4)

This is known as Schrodinger’s equation for free particle.
I It is complex equation with complex wave function, i.e., we

cannot directly observe this wave but its square.
I Extension for particle with potential energy U(x) can be done

by replacing H0 7→ H = p2

2m + U(x), without any operation by
the position x



Particle wave function

Schrodinger’s equation in full form is(
− ~2

2m

∂2

∂x2
+ U(x)

)
ψ(x , t) = i~

∂

∂t
ψ(x , t) (5)

This is a kind of second order partial differential equation, it is
really hard to find solution even for mathematicians.
Actually we don’t need to use this full form, physicists interest to
describe particle wave existing here, not propagating wave from to
anywhere like solution from equation (5).
Not propagating wave is known in form of standing wave,
described by a wave function in which space and time functions are
separated, so that we need particle wave function in the form

ψ(x , t) = ϕ(x)f (t) (6)

where ϕ(x) is stationary particle wave we need. This kind of
particle is said to be in its stationary state.



Insertion (6) into (5), we get

f (t)

(
− ~2

2m

d2

dx2
+ U(x)

)
ϕ(x) = ϕ(x)

(
i~

d

dt
f (t)

)
7→ 1

ϕ(x)

(
− ~2

2m

d2

dx2
+ U(x)

)
ϕ(x) =

1

f (t)

(
i~

d

dt
f (t)

)
= α (7)

1

f (t)

(
i~

d

dt
f (t)

)
= α 7→ df (t)

f (t)
= −i α

~
dt

ln f (t) = −i αt
~
7→ f (t) = e−iαt/~ (8)

When compare to the case of free particle, we observe that

α

~
= ω 7→ α = ~ω = E

It is the particle energy. From (7) we can have(
− ~2

2m

d2

dx2
+ U(x)

)
ϕ(x) = Eϕ(x) (9)

This is the reduced (time-independent) Schrodinger equation for
particle wave in its stationary state, we need to pay attention to.



Quantum statistics

Do particle really behave like a wave?
Reference to: A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki,
and H. Ezawa. American Journal of Physics 57, 117 (1989),
demonstration of electron interference from double slit.



We observe that a few electrons cannot construct interference
pattern but a number of them.
So that observation of particle wave is a kind of statistical
measurement. According to fact, Max Born was interpret particle
wave function as a statistical amplitude of its measurement

|ϕ(x)| = a probability density amplitude (10)

|ϕ(x)|2 = a probability density (11)

|ϕ(x)|2dx = a probability (chance) (12)

of finding particle between x to x + dx .
This requires the normalization condition of the particle wave
function

∫ b

a
|ϕ(x)|2dx = 1, x ∈ [a, b](13)



This makes Einstein refuse to believe in quantum physics up to the
end of his life.



Wave packet and uncertainty principle

At the last step, we have to make a connection between particle
wave to the existing point particle at any point or region.



The wave packet can be constructed by superposition of number of
plane waves of wave vectors k with a suitable amount or amplitude

Mathematical expression of this is

ϕWP(x) =
∑
k

ake
ikx 7→ 1√

2π

∫
a(k)e ikxdk (14)

(From Fourier summation to Fourier integral.)



A normalized Gaussian wave packet is constructed from a
normalized Gaussian distribution function of the plane wave
amplitude

a(k) =
1√
σk
√
π
e−(k−k0)

2/2σ2
k (15)

7→
∫
|a(k)|2dk =

1

σk
√
π

∫
e−(k−k0)

2/σ2
kdk = 1 (16)

where σk =
√

2∆k is the (1/e)-width of Gaussian peak of |a(k)|2



Let us determine from (14)

ϕWP(x) =
1√
2π

1√
σk
√
π
e ik0x ...

...

∫
e−(k−k0)

2/2σ2
k+i(k−k0)xdk

=

√
σk√
π
e−x

2σ2
k/2+ik0x (17)

=
1√
σx
√
π
e−x

2/2σ2
x+ik0x , σx =

1

σk
(18)

7→
∫
|ϕWP(x)|2dx = 1 (19)

where σx =
√

2∆x , the (1/e)-width of the wave packet.
From (18) we have

∆x∆k =
1

2
7→ ∆x∆p =

~
2

(20)

It is called Heisenberg’s uncertainty relation.



For non-Gaussian distribution of the wave packet, the uncertainty
relation extended into the form

∆x∆p ≥ ~
2

Its meaning is that we cannot have the simultaneous precision of
the position and momentum measurements, in the regime of
Schrodinger wave mechanics. The best we can have appear in
(20), but it’s always greater in generic case. It was first explained
by Heisenberg using gamma ray microscope hypothesis



In the energy-time domain, we also have Heisenberg’s uncertainty
relations between the precision of time and energy measurements
in the same form as

∆t∆E ≥ ~
2

Applications of Heisenberg’s uncertainty relations
I estimate energy of quantum particle, for example of an

electron in hydrogen atom of diameter of d = 10A will have
maximum kinetic energy about

∆x = d ,∆p = p − 0 7→ p =
~

2d

K =
p2

2me
=

~2

8med2
=

(~c)2

8mec2d2

~c =
12.4× 10−7eV ·m

2π
= 1.97× 10−7eV ·m

7→ K =
(1.97× 10−7eV ·m)2

8(0.512× 106eV )(10−10m)2
= 0.95eV (21)

Let estimate the maximum kinetic energy of a proton inside
an atomic nucleus of diameter about d = 2.4fm
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I estimate the life time ∆t = τ of unstable particle live with
uncertainty of energy ∆E , or vice versa, for example of
neutral Pion π0, has its life time of τ = 8.5× 10−17s. We can
estimate the uncertainty in mass of the rest pion to be

∆E = ∆mπc
2 =

~
2τ

=
6.58× 10−16eV · s
2× 8.5× 10−17s

= 3.87eV

7→ ∆mπ = 3.87eV /c2

It is so small when compared to its rest mass of
mπ = 134.9MeV



Many Faces of Quantum Physics

There appears many faces of quantum physics, i.e, Schrodinger’s
wave mechanics, Heisenberg’s matrix mechanics, Dirac algebraic of
kets and bras, and Feynman sum over all paths

We just enter the field through Schrodinger’s glasses.


