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SE in 3 dimensions in Cartesian system

Cartesian system of coordinate = (x, y, z). The gradient

V= )?2 + 90 +Z—
~ox Yoy 70
The Laplace operator is
0? 0? 0?
V2=V .V=_>+

ox2 0y T o2

SE in three dimension, in Cartesian system, is

h2
—%V2@(X,y72)+U(X,y,Z)QO(X,y,Z): EQO(X,_)@Z) (1)

For practical propose we should have separation of variables of the
potential U(x,y,x) = U(x) + U(y) + U(x), then we can separate
variables of the wave function

p(x,y,2) = A(x)B(y)C(2)



With separated energy
E=E+E +E,
Equation (25) will become three separated independent equations

h2

— 5 A(x) + URA(X) = EA(x) (2)
2

_Q’ngff(y) + U(y)B(y) = E/B(y) (3)
2

I C2) + U2 C(a) = EC(2) )

For example of free particle wave in 3-dimension, in a large cube of
size L

h2
Ex ey ke = %(kf + k7 + k2) (5)

Py ky ke (ij, z) = \/?eikxx—i-iky)’—i-ikzz (6)



For example of infinite potential cube of volume V = a3, the
quantum energy and particle wave function will be

WP 2 2 2
oty Nz = 2m32(nx + ny, + ny), ne,ny,n, =123 .. (7)

1 . nem . ,nyT . N,
Penyn:(X,¥,2) = 1/ 3 5'”(TX) S'”(yTY)S'”(TZ) (8)

Pause For example of 3-dimensional isotropic harmonic potential
well, the quantum energy and particle wave function will be

3
Enynyon, = hw(nyx + ny + nz + 5) 9)

(2,2, 2
_ — 2 (P42
sOanynz(X,y,Z) = Gy, Cny Cp,e” 2 Oy +27)

X Hp, (ax)Hp, (ay)Hp, (a2) (10)

when o = /% and C, appears in equation (25).
Exercise: Try to write quantum energy and particle wave function
in 2-dimensions for all of these example potential problems.



SE in 3 dimensions in spherical system

In spherical coordinate system r'= {r,0, ¢}, and it is related to
Cartesian system (x, y, z) as

x = rsinfcos ¢
y = rsinfsin¢

zZ=rcosf

The gradient in spherical system is
0 10 ~ 1 0
v=rF 874_9 %—strsineaigb (11)

The Laplace operator is

2y L0 (p0VY 10 (VY1 PV
vV_r28r " or +r2sin939 sm@aa +r2sm 9&/52(12)



SE in spherical coordinate system will appear in ready to solve
form as

10 (,0 1 o0 /. 0 1 0?
{rzé)r <r 8r> T sin 6 90 <Sm089) * r2 sin29&¢52} #lr.8.9)
2m
+ﬁ[E - U(r,@,d))]g@(r,& ¢) =0
(13)
In case of the central potential problem, U = U(r), the particle

wave function in spherical system ¢(r, 0, ¢) will be separate into
radial and angular parts as

p(r,0,9) = R(r)Y(0,9)
Insertion into (13) and separate equation into radial and angular
equations, we will get

1d/,dR 2mr?
Rdr ( dr) + e [E- U0

1/1 0 oY 1 9%y
— o (— % (gl ) 2 T 14
Y<sineae <sm060>+sin268¢>2> (14)



LHS and RHS are equations of independent variables, equality can
only occur through some constant. Let us assume from (14)

1/ 1 9 (. 9y 1 Y 2
Y (989 (“‘%a) * mw) -
 (naa (5050 ) + g ) =Y =0 (9
%% (265:)) + 2’;’;2[5 —U(r)] =’
»—>r—12% <r2c(f> + <2hr;[E—U(’)]_O;22> R=0 (16)

(15) is angular equation for angular function Y (0, ¢), and (16) is
radial equation for radial function R(r).



Spherical harmonics

From the angular equation (15) for angular function Y(0, ¢), let us
do the separation of variable one more time as

Y(0,0) = ©(0)%(¢)
Insertion back into (15), we get

1 (. d (. do© 2 .2,  Lld?0
o <sm9d(9 (sm«9d0>>+0z sin 0__d>d¢2 =m (17)

With a similar reason as before, we can observe immediately that
solution of the right hand side equation will be

d?o

Eﬁz—#¢a¢wpwmﬁ (18)

where m = 0,41, 42, ... (are integers, in order to be the quantum
numbers, and any constants of integration are assumed to be one
for simplicity)



From equation (16)

1 d /. d© > m?
— - — = 1
sind do <5m9d0> * (a sinzﬂ)e 0 (19)
Change of variable x = cosf — dx = —sin0d#, then

Cz(<(1_X2)d(3)(<x)>+<a2_1m2xz>@(x):0

2 % m2
(1—x2)dig ) —2x§+ <a2— 1_X2>@(x):0 (20)

Ask Wolfram Alpha, we observe that (20) is a kind of associated
Lengendre equation for y(x) appears as

2
(1 - x)y" — 2xy' + (/(/ +1)— 1'1’X2) y=0 (21)

with a condition / = 0,1,2,...(are integers) and 0 < |m| < /.
Solution of (21) is called associated Lengendre polynomial
P/"(cos ).



The first few associated Legendre functions P"!(x)

Plx) =1

P)(x) =.x = cos@

P'(x) = (1 —x»)"* =sind

P(x) = 1(3x* = 1) = }(3cos’0 — 1)

P} (x) = 3x(1 — x*)"? = 3cos@ sin

P}(x) =3(1 — x*) = 3sin’ @

Pf(x) = %(51’ -3x) = %(5 cos’ @ — 3cosB)

Pl(x) = 2(5x2 = )(1 — x) = }(5cos* 8 — 1) sin#
PZ(x) = 15x(1 — x*) = 15cos @ sin’f

P} (x) = 15(1 — x)** = 15sin’ @

With parity / |
P = (T



Spherical harmonic

Form (20,21), we can have a = /(/ 4+ 1), and our solution of (20)
will be in the form of associated Legendre polynomial P/"(6, ¢)
with / =0,1,2,... and m=0,+1,4+2 ..., £/

The spherical harmonic Y;,(0, ¢) is defined form the combined
angular solutions

Yim(0,¢) = CimP|"(cos 9)ei’"¢ (22)
S i

It is the normalization constant.



The First Few Spherical Harmonics, Y;"(f?, @)y

0 1 5"
o= G = (_) o

1 3R i —id
¥ ==l = sin B¢ = sin fe
87 87(

s \ /2 1/2
Y= (—) (Bcost B — 1) Y}=— (Q) sin @ cos Pe'®

167
15\ : ue :
Y, = (—) sin@ cosfe™®  ¥I= (—) sin’ ge2'¢
= 8 2n
12
Y,2= (%) sin’ @e~2¢

a. The negative signs in ¥ '(6, ¢) and Yz' (A, ¢) are simply a convention.
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Mathematica command call for SphericalHarmonic
SphericalHarmonicY[l, m, 0, ¢] — Y;"(0, ¢)
The first few |Y),| plots

e=-4
RED i
Zo '-,57




Free particle wave in spherical system

In case of free particle wave in spherical system, the particle
potential energy is U = 0 and its radial equation (16) will become

1d [ ,dR(r) > 1(I+1) B
r2 dr <r dr )+(k o R(r) =0

P*R" +2pR + (p* = I(1 +1)) R=10, p = kr (24)
Wolfram Alpha can tell you that equation (24) is known in the

name of spherical Bessel equation, and its solution are called
spherical Bessel functions of the first and second kinds, as

Ri(p) = Cui(p) + Cani(p) (25)

T m@ asto
mx)  nyx)




From the figure, we do not need n;(p) because it diverges at origin
so we will set C; = 0. So that we will have our radial appropriate
radial solution for free particle wave in spherical system in the form

Ri(r) = Cyji(kr) (26)

Examples of the first few spherical Bessel functions of the first kind

, sinkr

Jotkr)= =

SR sink:* _ coskr

’ (kr)” kr

(k) = 3sinkr 3coskr sinkr

) (k)? kr



Infinite spherical potential well

In case of particle wave inside infinite spherical potential well

U(r):{ 0, 0<r<a

0, r>a

In this case we cannot have particle wave outside the sphere but
will be standing spherical wave inside the sphere.

We can use our previous equation (24) for this case but its solution
must vanish at the boundary of the sphere

R(a) = Cyji(ka) =0

Form figure above, you can see the zero points of j(kr), and this
will be listed by integer n = 1,2, .. for each /*" order of the
spherical Bessel function jj(kr).



List of zeros of the spherical Bessel function of the first kind

Number

of zero; j,(x) J(%)

n 1 2
I 3.14159 4.49341

2 6.28319%  7.72525°
3 9.42478°  10.9041"
4 12,5664 14,0662
5 15.7080 17.2208

Jo(x)

5.76346°
9.09501°
12.3229
15.5146
18.6890

J3(x)

6.98793"
10.4171
13.6980
16.9236
20.1218

J(x)
8.18256
11.7049
15.0397
18.3013
21.5254

The ordering of these zeros are indicated with numbers (n, /), as
Z,i, which are quantum numbers of the system. The
corresponding quantum energy will be

ka = Zn/ — kn/ =

an

) En/
a

_ RPky
2m 2ma?

m2Z?

(27)
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Example: Ground state energy of and electron being in infinite
spherical potential well with radius a = 0.5%A.

(he)?ZZ, (1.97 x 10~ 7eV - m)?(3.14)2
ElO = = — = 3.88eV
2(mc?)a®  2(0.512 x 106eV)(0.5 x 10-19m)?2




Degeneracy

Degeneracy is the number of quantum states appear with have the
same energy. With some degeneracy occur in the system, it will be
called degenerated system.

Degeneracy comes from symmetry of the system, i.e., central
potential system with spherical symmetry, its angular degeneracy
appear for each [ with 2/ + 1 values of m.

Exercise: Let count the degeneracy of free particle and infinite
spherical potential systems.



