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1. Schrodinger equation in three dimensions-Cartesian system
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SE in 3 dimensions in Cartesian system

Cartesian system of coordinate ~r = (x , y , z). The gradient

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

The Laplace operator is

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

SE in three dimension, in Cartesian system, is

− ~2

2m
∇2ϕ(x , y , z) + U(x , y , z)ϕ(x , y , z) = Eϕ(x , y , z) (1)

For practical propose we should have separation of variables of the
potential U(x , y , x) = U(x) + U(y) + U(x), then we can separate
variables of the wave function

ϕ(x , y , z) = A(x)B(y)C (z)



With separated energy

E = Ex + Ey + Ez

Equation (25) will become three separated independent equations

− ~2

2m
A′′(x) + U(x)A(x) = ExA(x) (2)

− ~2

2m
B ′′(y) + U(y)B(y) = EyB(y) (3)

− ~2

2m
C ′′(z) + U(z)C (z) = EzC (z) (4)

For example of free particle wave in 3-dimension, in a large cube of
size L

Ekx ,ky ,kz =
~2

2m
(k2x + k2y + k2z ) (5)

ϕkx ,ky ,kz (x , y , z) =
1√
L3

e ikxx+ikyy+ikzz (6)



For example of infinite potential cube of volume V = a3, the
quantum energy and particle wave function will be

Enx ,ny ,nz =
~2π2

2ma2
(n2x + n2y + n2z), nx , ny , nz = 1, 2, 3, ... (7)

ϕnxnynz (x , y , z) =

√
1

a3
sin(

nxπ

a
x) sin(

nyπ

a
y) sin(

nzπ

a
z) (8)

Pause For example of 3-dimensional isotropic harmonic potential
well, the quantum energy and particle wave function will be

Enx ,ny ,nz = ~ω(nx + ny + nz +
3

2
) (9)

ϕnxnynz (x , y , z) = CnxCnyCnz e
−α2

2
(x2+y2+z2)

×Hnx (αx)Hny (αy)Hnz (αz) (10)

when α =
√

mω
~ and Cn appears in equation (25).

Exercise: Try to write quantum energy and particle wave function
in 2-dimensions for all of these example potential problems.



SE in 3 dimensions in spherical system

In spherical coordinate system ~r = {r , θ, φ}, and it is related to
Cartesian system (x , y , z) as

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

The gradient in spherical system is

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
(11)

The Laplace operator is

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
(12)



SE in spherical coordinate system will appear in ready to solve
form as{

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

}
ϕ(r , θ, φ)

+
2m

~2
[E − U(r , θ, φ)]ϕ(r , θ, φ) = 0

(13)

In case of the central potential problem, U = U(r), the particle
wave function in spherical system ϕ(r , θ, φ) will be separate into
radial and angular parts as

ϕ(r , θ, φ) = R(r)Y (θ, φ)

Insertion into (13) and separate equation into radial and angular
equations, we will get

1

R

d

dr

(
r2
dR

dr

)
+

2mr2

~2
[E − U(r)]

= − 1

Y

(
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

)
(14)



LHS and RHS are equations of independent variables, equality can
only occur through some constant. Let us assume from (14)

1

Y

(
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

)
= −α2

7→
(

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

)
+ α2Y = 0 (15)

1

R

d

dr

(
r2
dR

dr

)
+

2mr2

~2
[E − U(r)] = α2

7→ 1

r2
d

dr

(
r2
dR

dr

)
+

(
2m

~2
[E − U(r)]− α2

r2

)
R = 0 (16)

(15) is angular equation for angular function Y (θ, φ), and (16) is
radial equation for radial function R(r).



Spherical harmonics

From the angular equation (15) for angular function Y (θ, φ), let us
do the separation of variable one more time as

Y (θ, φ) = Θ(θ)Φ(φ)

Insertion back into (15), we get

1

Θ

(
sin θ

d

dθ

(
sin θ

dΘ

dθ

))
+ α2 sin2 θ = − 1

Φ

d2Φ

dφ2
≡ m2 (17)

With a similar reason as before, we can observe immediately that
solution of the right hand side equation will be

d2Φ

dφ2
= −m2Φ 7→ Φ(φ) = e imφ (18)

where m = 0,±1,±2, ... (are integers, in order to be the quantum
numbers, and any constants of integration are assumed to be one
for simplicity)



From equation (16)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
α2 − m2

sin2 θ

)
Θ = 0 (19)

Change of variable x = cos θ 7→ dx = − sin θdθ, then

d

dx

(
(1− x2)

dΘ(x)

dx

)
+

(
α2 − m2

1− x2

)
Θ(x) = 0

(1− x2)
d2Θ(x)

dx2
− 2x

dΘ

dx
+

(
α2 − m2

1− x2

)
Θ(x) = 0 (20)

Ask Wolfram Alpha, we observe that (20) is a kind of associated
Lengendre equation for y(x) appears as

(1− x2)y ′′ − 2xy ′ +

(
l(l + 1)− m2

1− x2

)
y = 0 (21)

with a condition l = 0, 1, 2, ...(are integers) and 0 ≤ |m| ≤ l .
Solution of (21) is called associated Lengendre polynomial
Pm
l (cos θ).



With parity

P
−|m|
l (x) = (−)m

(l −m)!

l + m)!
P
|m|
l (x)



Spherical harmonic

Form (20,21), we can have α = l(l + 1), and our solution of (20)
will be in the form of associated Legendre polynomial Pm

l (θ, φ)
with l = 0, 1, 2, ... and m = 0,±1,±2, ...,±l .
The spherical harmonic Ylm(θ, φ) is defined form the combined
angular solutions

Ylm(θ, φ) = ClmP
m
l (cos θ)e imφ (22)

with Clm = (−)m

√
(2l + 1)

4π

(l −m)!

(l + m)!
(23)

It is the normalization constant.





Mathematica command call for SphericalHarmonic

SphericalHarmonicY[l,m, θ, φ] 7→ Ym
l (θ, φ)

The first few |Ylm| plots



Free particle wave in spherical system

In case of free particle wave in spherical system, the particle
potential energy is U = 0 and its radial equation (16) will become

1

r2
d

dr

(
r2
dR(r)

dr

)
+

(
k2 − l(l + 1)

r2

)
R(r) = 0

ρ2R ′′ + 2ρR ′ +
(
ρ2 − l(l + 1)

)
R = 0, ρ = kr (24)

Wolfram Alpha can tell you that equation (24) is known in the
name of spherical Bessel equation, and its solution are called
spherical Bessel functions of the first and second kinds, as

Rl(ρ) = C1jl(ρ) + C2nl(ρ) (25)



From the figure, we do not need nl(ρ) because it diverges at origin
so we will set C2 = 0. So that we will have our radial appropriate
radial solution for free particle wave in spherical system in the form

Rl(r) = C1jl(kr) (26)

Examples of the first few spherical Bessel functions of the first kind



Infinite spherical potential well

In case of particle wave inside infinite spherical potential well

U(r) =

{
0, 0 < r < a
∞, r > a

In this case we cannot have particle wave outside the sphere but
will be standing spherical wave inside the sphere.
We can use our previous equation (24) for this case but its solution
must vanish at the boundary of the sphere

R(a) = C1jl(ka) = 0

Form figure above, you can see the zero points of jl(kr), and this
will be listed by integer n = 1, 2, .. for each l th order of the
spherical Bessel function jl(kr).



List of zeros of the spherical Bessel function of the first kind

The ordering of these zeros are indicated with numbers (n, l), as
Znl , which are quantum numbers of the system. The
corresponding quantum energy will be

ka = Znl 7→ knl =
Znl

a
, Enl =

~2k2nl
2m

=
~2Z 2

nl

2ma2
(27)



Example: Ground state energy of and electron being in infinite
spherical potential well with radius a = 0.50A.

E10 =
(~c)2Z 2

10

2(mc2)a2
=

(1.97× 10−7eV ·m)2(3.14)2

2(0.512× 106eV )(0.5× 10−10m)2
= 3.88eV



Degeneracy

Degeneracy is the number of quantum states appear with have the
same energy. With some degeneracy occur in the system, it will be
called degenerated system.
Degeneracy comes from symmetry of the system, i.e., central
potential system with spherical symmetry, its angular degeneracy
appear for each l with 2l + 1 values of m.
Exercise: Let count the degeneracy of free particle and infinite
spherical potential systems.


