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Brief Nuclear Histories

1896: discovery of radioactivity by Becquerel
1898: separation of Radium by Maria and Pierre Curie; discovery
of α, β, γ rays
1911: discovery of atomic nucleus as a central part of an atom
by Rutherford
1919: Rutherford carries out first nuclear reaction
He + N → p + O
1928: quantum tunneling theory of alpha decay by Gamow
1930: prediction of the existence of neutrino by Pauli and
prediction of existence of antimatter by Dirac
1932: discovery of the neutron (the missing part of nuclear
matter) by Chadwick and discovery of positrons (anti-electron)
by Anderson
1934: quantum theory of beta decay by Fermi, know as Fermi
golden’s rule
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Nuclear Symbol

Atomic nucleus consist of number of protons and neutrons, bind
together by nuclear strong force

For a nucleus of atom X with Z protons and N neutrons, its
nuclear symbol is

A
ZXN ,

A
ZX ,

AX (1)

where A = Z + N is the atomic mass number.
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Groups of atomic nuclei with some numbers of Z ,N and A are
classified to be

isotope: for the nuclei with the same Z but differ in N,A
isotone: for the nuclei with the same N but differ in Z ,A
isobar: for the nuclei with the same A but differ in Z ,N
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Nuclear Shape and Size

We study nuclear shape and size by using high energy electron
scattering experiment

Let us determine quantum scattering theory of high energy
electron from atomic nucleus with Z protons, the interaction is
Coulomb attraction, it is elastic scattering with momentum
transfer ~q = ~kf − ~ki , with kf = ki = k , so that q = 2k cos(θ/2)
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One can write

φi(~r) ∼ e ikiz → ~Ji =
~ki
m

ẑ (2)

φf (~r) ∼ f (θ, φ)
e i
~kf ·~r

|~r |
+ e ikiz → ~Jf =

~kf
m
|f (θ, φ)|2r̂ (3)

The differential cross section is defined to be

dσ =
scattering rate in to solid angle dΩ

incident particle flux density

=
Jf dΩ

Ji
= |f (θ, φ)|2dΩ, since kf = ki (4)

dσ

dΩ
= |f (θ, φ)|2 (5)

It is measured in unit of barn: b, where 1.0b = 10−24cm2
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The scattering amplitude f (θ, φ) can be derived from the first
Born approximation

f (θ, φ) = − m

2π~2
〈φf |V |φi〉

= − m

2π~2

∫
φkf (~r)V (~r)φki (~r)d~r

= − m

2π~2

∫
e−i~q·~rV (~r)d~r (6)

Since

V (~r) = −Zẽ2

∫
ρ(~r ′)

|~r − ~r ′|
d~r ′, ẽ2 =

e2

4πε0
(7)

With ~R = ~r − ~r ′, we will have

f (θ, φ) =
mZẽ2

2π~2

∫
e−i~q·

~R

|~R |
d ~R

(∫
e−i~q·~r

′
ρ(~r ′)d~r ′

)
(8)
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The form factor is defined as

F (q) =

∫
e−i~q·~r

′
ρ(~r ′)d~r ′ (9)

And the other integral in (8) can be calculated separately as∫
e−i~q·

~R

|~R |
d ~R →

∫
e−i~q·

~R−αR

|~R |
d ~R

= 2π

∫ ∞
0

dRRe−αR
∫ +1

−1

e−iqR cos θd cos θ

=
2π

−iq

∫ ∞
0

dRe−αR
(
e−iqR − e+iqR

)
=

2π

−iq

(
1

α + iq
− 1

α− iq

)
=

4π

α2 + q2

−−→
α=0

4π

q2
(10)
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Now eq.(8) becomes

f (θ, φ) =
2mZẽ2

~2

F (q)

q2
=

mZẽ2

2~2k2 cos2(θ/2)
F (q)

=
Zẽ2

4E cos2(θ/2)
F (q), with E =

~2k2

2m
(11)

The differential cross section becomes

dσ

dΩ
=

(
Zẽ2

4E

)2
1

cos4(θ/2)
|F (q)|2

=

(
dσ

dΩ

)
Rutherford

|F (q)|2 (12)
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Let us evaluate the form factor F (q) from a simple uniform
sphere particle distribution

ρ(r) =

{
3

4πa3 , r ≤ a
0, r > a

(13)

F (q) =

∫
e−i~q·~rρ(r)d~r = 4π

∫ ∞
0

sin(qr)

qr
ρ(r)r 2dr

=
3

qa3

∫ a

0

sin(qr)rdr

=
3

q3a3

{
− [x cos(x)]qa0 +

∫ qa

0

cos(x)dx

}
= − 3

q3a3
{qa cos(qa)− sin(qa)} (14)

|F (q)|2 =
9

q6a6
(qa cos(qa)− sin(qa))2 (15)

with q = 2k cos(θ/2).
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An appearance of |F (q)| is looked like a diffraction pattern as

From experiment
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This results to the fact that atomic nucleus has uniform positive
charge (or mass) distribution

The empirical formula of the nuclear radius is then can be
derived to be

r = r0A
1/3, r0 = 1.2fm (16)
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For examples see figure below, where R is from (16) and Rp with
a correction of finite nuclear size effect to Coulomb potential
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Nuclear Stability

The observed nuclei in nature appear as in the following figure.
Their distribution appear in the form of the Valley of Stability
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We can determine the nuclear stability from its binding energy
calculated from a mass defect formula. For the X nucleus with
Z protons and N neutrons, it is

∆M(X ) = ZM(1H) + Nmn −M(x) (17)

Eb = ∆Mc2 (18)

All masses are measured in atomic mass unit u, where

1.0u = 1.66× 10−27kg (19)

→ uc2 = 1.49× 10−10J = 931.5MeV (20)

The binding energy per nucleon is then calculated to be

eb =
Eb

A
MeV /nucleon (21)
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Graph of binding energy per nucleon

56Fe appear at the maximum
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Nuclear Decays

Unstable nuclei will decay into more stable one. Let N(t) be the
number of remaining nuclei at any time t can be determined as
in the following

dN(t) ∝ N(t)dt → dN(t) = −λN(t)t

→ N(t) = N(0)e−λt (22)

where λ is a decay constant, in unit of s−1.
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Here we have two time scales of the decay process

Half − life time T1/2 =
ln 2

λ
=

0.693

λ
(23)

Life time τ =
1

λ
(24)

For example of 131I , where T1/2 = 8.0197days → λ = 10−6s−1

and τ = 106s = 11.574days.

U. Robkob, Physics-MUSC 1 Nuclear Phenomenology April 26, 2021 19 / 29



Let us consider compound decays N1
λ1−→ N2

λ2−→ N3, the decay
equations are

dN1

dt
= −λ1N1

→ N1(t) = N1(0)e−λ1t (25)

dN2

dt
= λ1N1 − λ2N2 →

dN2

dt
+ λ2N2 = N1(0)e−λ1t

→ N2(t) = N2(0)e−λ2t +
λ1

λ2 − λ1
N1(0)

(
e−λ1t − e−λ2t

)
(26)

dN3

dt
= λ2N2

→ N3(t) = N3(0) +

∫ t

0

λ2N2(t ′)dt ′

= N3(0) + N2(0)
(
1− e−λ2t

)
+N1(0)

(
1 +

λ2

λ2 − λ1
e−λ1t − λ1

λ2 − λ1
e−λ2t

)
(27)
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Note that (4,5,6) is a set of Bateman equations, and their
solution are derived by the method of Laplace transformations.

There are three cases of interest for compound decays

non-equilibrium, for the case of λ1 � λ2, with N2(0) = 0, the
decay equation becomes

N2(t) =
λ1

λ2 − λ1
N1(0)

(
e−λ1t − e−λ2t

)
(28)
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Three cases of compound decays (cont.)

secular equilibrium, for the case of λ1 � λ2, with N2(0) = 0,
decay equation becomes

N1(t) ' λ1

λ2
N1(0)

(
1− e−λ2t

)
(29)
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Three cases of compound decays (cont.)

transient equilibrium, for the case of λ1 < λ2, with N2(0) = 0,
decay equation becomes

N2(t) ' λ1

λ2 − λ1
N1(0)e−λ1t (30)

U. Robkob, Physics-MUSC 1 Nuclear Phenomenology April 26, 2021 23 / 29



Bateman solution for general compound decays

N1
λ1−→ N2

λ2−→ ...Nn−1
λn−1−−→ Nn, with conditions of Ni(0) = 0 for

i ≥ 2, ..., n is

Ni(t) = λ1λ2...λn−1N1(0)
n∑

j=1

e−λj t

Πn
k 6=j ,k=1(λk − λj)

(31)

Example decay series of 238U
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Radioactivity

Decay rate of activity is defined as

R(t) =

∣∣∣∣dN(t)

dt

∣∣∣∣ = λN(t) (32)

In unit of decay per second or Becquerels (Bq), or Curies (Ci) in
which

1 Ci = 3.7× 1010 Bq (33)

Specific activity is activity per unit mass of radioactive nuclei
[Bq/g or Ci/g]

SR =
R

m
=
λN

m
(34)
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Radioactive Dating

The decay constant of a given radio-isotope (unstable nuclei) is
not effected by temperature, physical, chemical state, or any
other influence of the environment outside the nucleus, so that
the decay continue in a predictable rate.
This makes several types of radioactive dating feasible.
Starting with the simplest case where there are no daughter
atoms present and no mass is lost from the sample, the age can
be determined by measuring the relative amounts of the isotopes
available at the beginning in the past and the remaining at
present.
Let NP is a number of ”parent nuclei” and ND is a number of
”daughter nuclei”, with a single channel decay of the parent, the
conservation equation of particles say that

NP(t0) = NP(t) + ND(t), t > t0 (35)

U. Robkob, Physics-MUSC 1 Nuclear Phenomenology April 26, 2021 26 / 29



From the decay law

NP(t) = NP(t0)e−λ(t−t0) → ∆t = t − t0 =
1

λ
ln

(
NP(t0)

NP(t)

)
(36)

→ ∆t = t − t0 =
1

λ
ln

(
RP(t0)

RP(t)

)
(37)

with R = λN is the activity.
More complicate situation occur when there are production of
daughter nuclei form the other source in the same environment,
the particle number conservation becomes

NP(t0) + ND(t0) = NP(t) + ND(t), t > t0 (38)

Fortunately for radioactive dating processes, additional
information is available in the form of other isotopes of the
daughter elements D ′ involved in the radioactive process. The
particle number conservation equation can be written in term of
the ratio as

NP(t0) + ND(t0)

ND′(t0)
=

NP(t) + ND(t)

ND′(t)
, t > t0 (39)U. Robkob, Physics-MUSC 1 Nuclear Phenomenology April 26, 2021 27 / 29



In case of D ′ is not radioactive, we can apply decay law to (18) and
we get

ND(t)

ND′(t)
=

NP(t)

ND′(t)

(
eλ∆t − 1

)
+

ND(t0)

ND′(t0)
(40)

We still have many unknowns to solve directly for ∆t, but will can
determine from graphical method. Let y = ND(t)/ND′(t) and
x = NP(t)/ND′(t), from (19) we have

y = x
(
eλ∆t − 1

)
+ y0 → y(x)− graph (isochron) (41)

→ dy

dx
= eλ∆t − 1, slope of the graph (42)

Evaluation

∆t =
1

λ

(
1 +

dy

dx

)
(43)

Example of Rb-Sr isochron dating, T1/2(87Sr) = 48.8× 109yrs and
dy/dx = 0.0665, then ∆t = 4.53× 109yrs.
(The data plotted here is from G. W. Wetherill, Ann. Rev. Nucl. Sci. 25,
283 (1975) and involves the dating of a meteorite.)U. Robkob, Physics-MUSC 1 Nuclear Phenomenology April 26, 2021 28 / 29



Rubidium-Strontium (Rb-Sr) Isochron, to estimate the edge of the
Earth
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