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3 Nuclear Shell Models 1

In order to apply quantum mechanics calculation to describe nuclear struc-
ture. Check point can be done from nuclear spectroscopy, decay processes,
and nuclear reaction.

3.1 Evidence of nuclear shell structure

As early as 1917 Harkins pointed out that nuclei with even numbers of pro-
tons or neutrons are more stable than those with odd numbers. Elsasser
(1933) found that special numbers of protons or neutrons form particularly
stable configurations. We shall list here a series of facts which indicate that
we obtain especially stable nuclei when either the number of protons Z or
the number of neutrons N = A — Z is equal to one of the following numbers
(Mayer 1948):
2,8,14,20, 28,50, 82,126

These values are commonly referred to as magic numbers.
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3.2 Single-particle in spherical potential well

Schrodinger’s equation
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Working in spherical coordinate system

Separate the variable
o(r,0,0) = Reu(r)Yim (9, ¢)
Using the fact that
L?Yin (0, ¢) = (I + V)Y (6, )
From (3), we get the radial equation
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3.3 Rigid sphere

Rigid spherical potential well of radius a

0, 0<r<a
00, r>a

v ={
Radial equation inside the sphere
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Substituting ug(r) = rRg/(r), we will have
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From equation (5) we have

Pup N (kz_ l(l+1))uE,:O (6)

dr? 72

11+ 1) -
! ) uslp) =0 (7

p="kr —ug(r)=um(p), uylp)+ <1 -

This is known in the name of spherical Bessel differential equation. [See
https://mathworld.wolfram.com/Spherical BesselDifferential Equation.html] Its
solutions appear in term of spherical Bessel functions of the first and second
kinds, respectively, as

ug(p) = Auji(p) + Buyi(p) (8)

See figure (1).

Figure 2:

Since y;(p) is not finite at origin, we set the integration constant B; = 0.
Then we have

up(p) = Aji(p) (9)

as our solution, with A; as the normalization constant. Note that the radial
solution vanishes at the boundary

Jilp) =0 —= p=ka= Gy (10)
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Note that 3, is called zero points of Bessel functions.
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Spectroscopic notation of nuclear energy levels, similar to atomic levels,
n — shell, | — orbital = (0,1,2,3,...) = (s,p,d, f,...)
List of levels inside rigid spherical well:

1s,1p, 1d,2s,1f,2p, ...

3.4 Isotropic harmonic potential
The isotropic harmonic potential well

1 1
V(r) = Spr® = Spu?(a + 3 + 22) (12)

From (3), we will have radial equation in the form
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Using the fact that the energy level of the system will be the same as we
have derived from Cartesian coordinate coordinate calculation, i.e.,

E = Ey = hw(N + 3/2)

Then we have from (13)
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We get from (14)
d2’LLNl
dp?
Let us define

+ ((QN +3) — p* — l(l; 1)> un; =0 (15)

uni(p) = flp)e ™t (16)

d? d
(15) —>pd—p£+ (20 +1) —2p2>d—£+2p((1v—1)f —0 (a7
=p2,f=f(n)—>nj—n’£+(l+%+1—n>3—{7+¥ = (18)

We derive the associated Laguerre equation for f(n), its solution exist for
(N —10)/2=n—12>0, in form of associated Laguerre polynomial

Y2, n=(N=0/2+1=1,2,3,... > N=2(n—1)+1

n—1
We finally have
Ru(r) = anrle_“W?/QhLlntllm(,uwr2/h) (19)
E.u=02n+1-1/2)hw (20)

List of some nuclear levels

n [ Orbitals Energy
1 0 1s %hw
1 1 1p ghw
21 0,2 2s,1d +hw

3.5 Wood-Saxon potential

The wood-Saxon potential well

Vo
B 1+ e(T—R)/a

where R = roA'/? is the nuclear radius, with ry = 1.27fm, a ~ 0.67fm skin
thickness, and Vy ~ 50 — 33(N — Z)/A in MeV, see figure (6).

An analytic solution of radial Schrodinger’s equation of Wood-Saxon po-
tential can be found in the book by F. Flugge (Practical Quantum Mechanics,
Springer). The energy levels are derived by graphical method, as always done
for finite potential well problem. Comparison with the previous two model
potentials is shown in figure (3.5).

Vivs(r) = (21)
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3.6 Spin-orbit coupling

Mayer and Jansen (1949) included (strong) spin-orbit potential, in order to
explain the magic number, in the form

V(r) = Veentrar(r) + Vso(?“)[_: .S



The spin-orbit interaction splits the [-level into two j-levels, i.e., j =1+ 1/2,
and the splitting are determined from

L-S‘:%[J?—L?—SQ} (22)

(Im|L - S|lm) = % {j(j +1)—1(1+1) - 2 (23)
Rl j=1+1)2

_?{(Hl), j=1-1/2 (24)

Normally we will take Vso(r) — « a model parameter, for comparison with
experiment. The spin-orbit coupling shift is shown in figure (3.6).
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3.7 Multinucleon configurations
We already have shell structure of one-nucleon, i.e., isotropic harmonic oscil-
lator + LS coupling (with correct set of magic numbers). For multinucleon
nuclei, the occupation into the nuclear levels are determined to follow:

e Pauli’s exclusion principle

e Hund’s rule of maximal spin alignment within the same orbital

e the fact that it is better for neutron and proton to occupy different

potential wells

ol Coulomb neck
eV
Un1zadss?fm 0 1 2 3 4 5 6/ 7 8 fm
/- |
0}  Brsirs R L rroor S !_ EF
50 ] —5+;—6—Z$—f
]
20 |
" 2B s ]
20 ! =
— J
8
-30 | 2
2
-40
o Neutron polential Proton potential

Figure 7: Neutron and proton potential wells.



A list of nuclear orbitals(nlj) (with LS-coupling) with occupation num-
bers (25 + 1):
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Figure 8: A list of nuclear orbitals (nlj).

Ground state configuration of 2C"
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Figure 9: Ground state configuration of 2C'.



Ground state configuration of 3C:
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Figure 10: Ground state configuration of 3C'

The first excited state configuration of '2C, assume an excitation of a
neutron, it leaves hole state at the lower level.
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Figure 11: First excited state configuration of 2C' with hole.

3.8 Spin and parity
3.8.1 Nuclear spin

According to Hund’s rule of nucleon occupation, the nuclear spin is deter-
mined from the summation of spins of all unpaired nucleons.
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Figure 12: Nuclear spin.
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3.8.2 Nuclear parity

e Parity of single nucleon orbital (nlj) is defined to be
= (-1)
The parity of this state is denoted by ;™.

e Parity of multi-nucleon nuclei is determined from the product of all one

nucleon parity
™ = Hi7A(—1)li

Note that

— for odd A nuclei (even/odd or odd/even of n/p), there is always
one un-pair nucleon in the ground state. Therefore the parity of
the odd A nuclei ground state is determined from parity of the
un-paired nucleon orbital.

— for nuclear orbital (nlj), there are 25 + 1 occupation number, this
corresponds to

This represents the orientations of J. So that for filled orbital the
total j = 0. For example of 2, its ground state parity is j© = 0T
— in case of *C, its ground state parity is ;™ = 3
— in case of ''C, its ground state parity is j™ = 3

n(lslfl)l(lpy_‘-)s plsy), ]2(1})3;:- )*
—H—f— | 1 | l 1psp

t 1 t 1
— T Lsyp

n Y

Figure 13: Ground state configuration of *C'
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e the parity of first excited state of 2C is determined from j of excited
neutron and created hole:

T =T+ Jhote = = ju+ Jur s ljn — gl (25)
Jn=1/2,jp,=3/2—=j=2,1 (26)

— 1 =n(p12)m(ps2) = (—1)(=1) =+1 = 7 =17 or 2*  (27)
Observed j™ =27 (28)
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