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10 Theory of Nuclear Fission

According to N. Bohr and J.A. Wheeler (1939).

10.1 Fission mechanism

The theory is based on liquid drop model of the nucleus.
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Figure 10.1: Liquid drop model of fission.

Mechanism: when a neutron hits a nucleus, the compound nucleus is
formed with certain excited energy due to the extra neutron. The fission

equation will be
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where f means a ”few” neutrons.

(10.1)

The excited compound nucleus immediately falls into rapid oscillation.
The vibration set up deformed nucleus and results to the exchange of liquid

drop surface energy and Coulomb energy.

Set up the related liquid drop energy equation, we have
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where S is the surface tension of the liquid drop.

(10.2)

Note that Eg tend to restore the spherical shape, while E¢ effects to

increasing the deformation.
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Figure 10.2: Deformed nucleus and fission.

10.2 Light nuclei (E¢ < Eg)

Let there be two fission fragments of radius R’ = rq(A4/2)'/3.

Figure 10.3: Lite nuclei fission fragments.

The energy just after fission is
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So that the critical energy of the deformed nucleus is
AE., =FE — Fy

Let
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The critical energy of deformation causing fission is depend on Z2/A for

light nuclei.



10.3 Heavy nuclei (E¢ > Es)

Description of the deformed sphere, with axial symmetry, is

R(0) =R oqP(cosf) = R+ asPy(cos0) + a3Ps(cosf) + ...  (10.7)
=0

where Pj(x) is Legendre polynomial. The zeroth order is a sphere, while the
first order is displacement and is ignored from (10.7). For [ > 1 they are
multipole deformations.

The surface energy of the deformed nucleus is

Esy = 4nR%S = 4rriSA%3 (10.8)
Es = 47R*(9)S
= 4mr2SA?3[1 4+ agPy(cos ) + azPs(cosb) + ...)°
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= 4rriSAY3 B + %ag + %ag + ] (10.9)

Therefore
AEs., = Es— Egy=4mriSAY? [gag + gag + } (10.10)
= Eg [gag + gag + ] (10.11)

The Coulomb energy of the deformed nucleus is
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Therefore
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Finally we get
1

AE, = Age +AFcqy = 504%(2]550 — Eco) (10.16)

2 2

_ > 23 4
= 5 <2a2A a3A1/3> (1017)
< 0, for large Z (10.18)

Note that for AE,,. > 0 the drop is stable, while for AE.. < 0 the drop is
unstable and leads to spontaneous fission. This refers to a critical parameter
of spontaneous fission

72 2a

The distribution of yield of fission products of charge Z is generally assumed
to be gaussian for each fragment mass A and is given by

(Z - Zp)2]

c

P(2) = \/10? exp [—

where c is proportional constant and Z,, is fragment charge. It was found
that ¢ = 0.86 fits a goos deal to the observed data.

(10.20)
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Figure 10.4: Mass distribution of fission fragments.



