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11 Theory of Nuclear Fusion

The fusion of two nuclei take action of two fundamental forces, long range
Coulomb repulsion and short range nuclear strong force attraction. The pro-
jectile nucleus have to pass through Coulomb barrier, by quantum tunneling,
to hit the target nucleus, with a chance of nuclear cross section.

11.1 Reaction rate

For a well prepared nuclear fusion X(a, b)Y , the reaction rate per unit vol-
ume will take the form

RaX =
1

1 + δaX
na · nX · σ · v [reaction · s−1 ·m−3] (11.1)

where na is projectile nucleus number density, nX is target nucleus number
density, T is Coulomb barrier tunneling coefficient, σ = σgeo · T is fusion
cross section (with T is tunneling coefficient through Coulomb barrier) and
v is relative velocity. Note that δaX = 1 is a correction factor when the
projectile and target nuclei are the same type.

Note that RaX = PY is the same as production rate of the nucleus Y .
The destruction rate of the nucleus X can be determined to be

DX = −dnx
dt
− (1 + δaX)RaX = −nanXσv ≡ −

nX
τa(X)

(11.2)

τa(X) =
1

naσv
(11.3)

where τa(X) is the destruction time scale of the X nucleus against the
reaction with a.

The energy production rate per unit volume can be written in the form

EX(a,b)Y = RaXQX(a,b)Y [MeV/s ·m3] (11.4)

11.2 Coulomb barrier tunneling coefficient

The Coulomb barrier is

VC(r) =
ZaZXe

2

4πε0r
=

1.44ZaZX
r

[MeV/fm] (11.5)
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after we have used the fact that e = 1.6×10−19C, ε0 = 8.85×10−12C ·N−1 ·
m−2, all proportional constant appear to be 2.3×10−13J or 1.44MeV , when
r is measured in fm.

Figure 11.1: Coulomb barrier.

We ever have been derived an expression of quantum tunneling coeffi-
cient, from WKB approximation, in alpha decay mechanism. Its expression
can be adapted to nuclear fusion in the form

T ' exp

[
−2π

h̄

√
m

2E

ZaZXe
2

4πε0

]
= exp

[
−2π(1.44)ZaZX

h̄v

]
≡ e−2πη (11.6)

where v =
√

2E/m is relative velocity and η = 1.44ZaZX/h̄v is known as
Sommerfeld parameter

11.3 Direct nuclear reaction cross section

From the geometry of nuclear reaction below

Figure 11.2: Direct nuclear reaction cross section.
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Let us determine the angular momentum of the projectile nucleus

Classically l = bp (11.7)

Quantum−mechanically lh̄ = blp =
h̄bl

λ̃
, λ̃ =

λ

2π
(11.8)

where p = h/λ is the de Broglie particle-wave. From quantum mechanics, l
can take integer values, while bl cannot be measured exactly, according to
Heisenberg uncertainty principle.

The projection with and an energy E and the angular momentum quan-
tum l can be characterized by an impact parameter bl, with the cross section
seen by the projectile as a ring surface of

σl(E) = π
[
(l + 1)2 − l2

]
λ̃2 = (2l + 1)πλ̃2 (11.9)

With the fact that we have lmax at blmax = Rn, the radius of nuclear potential
well, then

σ(E) =

lmax∑
l=0

σl(E) = πλ̃2
lmax∑
l=0

(2l + 1) = πλ̃2(lmax + 1)2 (11.10)

= π(Rn + λ̃)2 (11.11)

And we will have, by definition,

σ(E) =

{
πR2

n, High E : λ̃� Rn, T (E) ∼ 1

πλ̃2T (E), Low E : λ̃� Rn
(11.12)

Note that at low energy

σ(E) = πλ̃2T (E) =
πh̄2

p2
T (E) =

πh̄2

2mE
e−bE

−1/2
(11.13)

→ σ(E) =
S(E)

E
e−bE

−1/2
(11.14)

where S(E) is known as astrophysical S-factor, represents intrinsic nuclear
part of the reaction probability, and

b = 2πηE1/2 = 31.28ZaZxµ
1/2 keV 1/2
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Figure 11.3: The fusion reaction cross section.
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Figure 11.4: Some important fusion reactions cross section.

11.4 Thermal averaged fusion reaction rate

Fusion reaction in stellar plasma.
Thermal distribution function (Boltzmann) of particle at energy E in an
environment of temperature T is

P (E, T ) = 8π

√
µ

(2πkBT )3
Ee−E/kBT (11.15)

where µ is a reduced mass and E = 1
2µv

2. So that the thermal averaged of
fusion reaction rate will be

〈RaX〉 =
1

1 + δaX
na · nX · 〈σv〉 (11.16)

→ 〈σv〉 = 8π

√
µ

(2πkBT )3

∫ ∞
0

σ(E)Ee−E/kBTdE

= 8π

√
µ

(2πkBT )3

∫ ∞
0

S(E)e−E/kBT−n/
√
EdE (11.17)
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We observe the Gamow peak at

e−E/kBT−b/
√
E → d

dE

(
e−E/kBT−b/

√
E
)
E0

= 0 (11.18)

The peak at : → E0 =

(
bkBT

2

)2/3

= 1.22(Z2
aZ

2
XµT

2
6 )1/3 keV (11.19)

where T6 means temperature in million Kelvin.

Figure 11.5: The Gamow peak.

We can estimate the width ∆ of Gamow peak by

e−E/kBT−b/
√
E ' Imaxe−

(E−E0)2

∆/2 (11.20)

→ Imax = exp

{
− E0

kBT
− b√

E0

}
= e−3E0/kBT (11.21)

= e−42.46(Z
2
aZ

2
Xµ/T

2
6 )

1/3
(11.22)

Back insertion of (11.21) into (11.20), and determine the second derivative
of both sides at E = E0, at the peak. We observe that

3b

4
E
−5/2
0 =

2

(∆/2)2
(11.23)

1

kBT
=

1

2
bE
−3/2
0 → ∆ =

4√
3

√
kBTE0 (11.24)

= 0.75(Z2
aZ

2
Xµ/T

5
6 )1/6 keV (11.25)

For example of 12C(p, γ)13N , at T = 30MK(kBT = 2.6keV ), we find that
E0 = 38keV,∆ = 23keV
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Figure 11.6: Some Gamow peak data.

Problems 11

11.1. (a) Compute the Coulomb threshold energy for the p(p, e+ν)D fusion
(in eV) Using the fact that kee2 = 1.44× 10−10eV .

(b) Compute the Coulomb threshold energy of the reaction 12C(α, γ)16O.

(c) Compare the results in (a) and (b). To which temperatures (in
K) to these energies correspond?.

11.2. Compute the energy of the Gamow peak of p(p, e+ν)D reaction at
T = 107K.

11.3. Assume the temperature at the center of the Sun is 107K, compute
the reaction rate of p(p, e+ν)D in this region.
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