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11 Theory of Nuclear Fusion

The fusion of two nuclei take action of two fundamental forces, long range
Coulomb repulsion and short range nuclear strong force attraction. The pro-
jectile nucleus have to pass through Coulomb barrier, by quantum tunneling,
to hit the target nucleus, with a chance of nuclear cross section.

11.1 Reaction rate

For a well prepared nuclear fusion X (a, b)Y, the reaction rate per unit vol-
ume will take the form
R.x = #na-nx o -v [reaction - s~ -m™ (11.1)
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where n, is projectile nucleus number density, nx is target nucleus number
density, T" is Coulomb barrier tunneling coefficient, 0 = 0g4e, - 1" is fusion
cross section (with 7" is tunneling coefficient through Coulomb barrier) and
v is relative velocity. Note that d,x = 1 is a correction factor when the
projectile and target nuclei are the same type.

Note that R,x = Py is the same as production rate of the nucleus Y.

The destruction rate of the nucleus X can be determined to be
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where 7,(X) is the destruction time scale of the X nucleus against the
reaction with a.
The energy production rate per unit volume can be written in the form

Ex(apy = RaxQx(apy [MeV/s-m?] (11.4)

11.2 Coulomb barrier tunneling coefficient

The Coulomb barrier is

Z.Zxer  1.447,7

1 [MeV/fm] (11.5)
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after we have used the fact that e = 1.6 x 1071°C, ¢y = 8.85 x 10~ 2C- N~ 1.
m ™2, all proportional constant appear to be 2.3 x 10713.J or 1.44M eV, when
r is measured in fm.
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Figure 11.1: Coulomb barrier.

We ever have been derived an expression of quantum tunneling coeffi-
cient, from WKB approximation, in alpha decay mechanism. Its expression
can be adapted to nuclear fusion in the form

2 Z.Zxe? 2w (1.44)Z,Z
T ~ exp [_;”277;3177?:] = exp [—W =e 2™ (11.6)

where v = /2F /m is relative velocity and n = 1.44Z,Zx /hv is known as
Sommerfeld parameter

11.3 Direct nuclear reaction cross section

From the geometry of nuclear reaction below
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Figure 11.2: Direct nuclear reaction cross section.



Let us determine the angular momentum of the projectile nucleus

Classically [ =bp (11.7)

LI G (11.8)

Quantum — mechanically lh=bp=—
by 2T

where p = h/\ is the de Broglie particle-wave. From quantum mechanics, [
can take integer values, while b; cannot be measured exactly, according to
Heisenberg uncertainty principle.

The projection with and an energy E and the angular momentum quan-
tum [ can be characterized by an impact parameter b;, with the cross section
seen by the projectile as a ring surface of

a(E) =7 [(1+1)* = 1?] 3 = (21 + 1)7\? (11.9)

With the fact that we have l,,q4 at b;,,,, = Ry, the radius of nuclear potential
well, then

lmax lmax

o(E) = of(B)=m)> (21 +1) = A\ (lmas + 1)° (11.10)
=0 =0

= 7(Rp + \)? (11.11)

And we will have, by definition,
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Note that at low energy
o(E) = T\*T(E) = 7Ti;T(E) _ T o (11.13)
P 2mkE
— o(E) = S(EE)G_Z)E_W (11.14)

where S(FE) is known as astrophysical S-factor, represents intrinsic nuclear
part of the reaction probability, and

b=2mnEY? = 31.282,Z,u"? keV'/?
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Figure 11.3: The fusion reaction cross section.
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Figure 11.4: Some important fusion reactions cross section.

11.4 Thermal averaged fusion reaction rate

Fusion reaction in stellar plasma.
Thermal distribution function (Boltzmann) of particle at energy E in an
environment of temperature T is

_ H —E/kpT

where p is a reduced mass and F = % puv?. So that the thermal averaged of
fusion reaction rate will be

1
1+5aX
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8 7(27rkBT)3 /0 S(E)e dE (11.17)

R.x) Ng - nx - (ov) (11.16)



We observe the Gamow peak at

—E/kpT—b/VE d ( _BksT-b/VE\ _

e - = (e )EO 0 (1L.18)
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The peak at : — Ey = (5) = 1.22(Z2Z%uTH'? keV  (11.19)

where Tg means temperature in million Kelvin.
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Figure 11.5: The Gamow peak.
We can estimate the width A of Gamow peak by
o—E/kpT—b/VE Imme—(E:/EzO)2 (11.20)
— Iag = €Xp {—kiOT - \/bET)} = ¢ 3Eo/kBT (11.21)
_ 6—42.46(Z,EZ§(u/T62)1/3 (11.22)

Back insertion of (11.21) into (11.20), and determine the second derivative
of both sides at E = Ej, at the peak. We observe that

3b__5/2 2
— = 11.2
4 0 (A/2)2 ( 3)
1 1, ap 4
= —bE A= —+\/kgTFE 11.24
kBT 2 0 - \/3 B 0 ( )
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For example of 2C(p,7)2N, at T = 30M K (kgT = 2.6keV), we find that
Ey = 38keV, A = 23keV



(T=15-10°K) | Af2 A - Imax

p+p 3.2keV 7.0 -107F keV
p+ MN 6.8 keV 2.5-10726 keV
a4+ 12C 9.8 keV 5.9 1075 keV
180 4. 180 20.2 keV 2.5 10727 keV

Figure 11.6: Some Gamow peak data.

Problems 11

11.1. (a) Compute the Coulomb threshold energy for the p(p, e*v)D fusion
(in eV) Using the fact that kee? = 1.44 x 10~ 1%V,

(b) Compute the Coulomb threshold energy of the reaction 12C(a,v)*¢0.
(c) Compare the results in (a) and (b). To which temperatures (in

K) to these energies correspond?.

11.2. Compute the energy of the Gamow peak of p(p,eTv)D reaction at
T=10"K.

11.3. Assume the temperature at the center of the Sun is 107K, compute
the reaction rate of p(p,e™v)D in this region.



