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Special Relativity: SR

@ Einstein's theory of special relativity, the two postulates:

» Newton's theory still valid at high speed relative motion
> All observers observe the same light speed ¢

@ Two effects on our observation:

» time dilation 1

Viop

where +y is called Lorentz factor, and Aty is called proper time
> length contraction

At = yAty, v = , B=

Al=2a
v

where Aly is called proper length
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@ Mathematics of SR: four dimensional Minkowski space M*
XO,Xl,X2,X3)

x € M*, x = xte,, x'=( (1)
@ Lorentz transformation x — x’, with relative motion in 3-direction:

X0 = 9(x0 = ), X% =4 = Bx0), Kt = xt, X2 =

(2)
with x? = ct, x! = x,x?> = y, x3 = z, we find that

» x3=0—=x% =ty = x0 =t/ = vty, time dilation

» X =023k X =h = x3=1= %/0, length contraction (results
from simultaneity)

@ Lorentz invariant quantity:

X2 _ (X0)2 _ (X1)2 _ (X2)2 _ (X3)2 _

2 2
= (X )rest =T
where 7 = ty proper time
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2

@ Relativistic kinematics:
xt = (ct,X), X* =1

> 4-position
> 4-velocity
dx* dx*
I—L = - = —_— v 2 =
v o p” (e, V), vo=c¢

» 4-momentum
pt = mv* = (yme,ymvV) = (E/c, p)
p* =m’c? = E?/c? — p? — E? = p°c? + m?c*

We have used the fact that E = 7mc2, and we observe relativistic

momentum p = ymv.
@ Some useful relations
E B» Vv p
"y = — = - = —
mc?’ c E
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Decays of Unstable Particles
@ One-to-two particle decay, with decay equation
X—=Yi+Y

e Conserve energy-momentum p* = (p1 + p2)¥
o In the rest (CM) frame of X-particle

pl = (My,0,0,0), pi = (E1,p), ph = (E2,—P) (3)

0 3-direction
Y5
]

&
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@ From energy-momentum conservation

M= E+ o= /m2— g2+ \/m} — p? (4)
@ Square both sides two times, and solve for p, we get
p= 5/ (M2 = (m+ maP)(M2 = (m = ma)?)  (5)
2M

This shows that the decay can occur iff M > m; + my
@ Use (5) in (4) to solve for Ej, Ep, we get

1

E]_ ZM(Mz + ml — m2) (6)
1

E> = W(MQ — m3 + mj) (7)

@ For special case of my = my = m, we have
1 1
7MV M2—4m27E]_ = E2 = EM
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o For example of a decay KO — 7t + 7~
M(K®) = 500MeV, m(7*) = 140MeV

— p=207MeV /c, E =250MeV

@ In the LAB frame, X-particle may comes in with some energy E’ and
momentum p’ in 3-direction.

3-direction

X,E
-
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@ All information in CM-frame will transferred to LAB-frame by Lorentz
transformations, i.e., Y7 particle informations

» CM-frame:

Py = (Ex,p1i, p1j),prL = psin®, py = pcosf
» LAB-frame:
pi" = (Ei, P11, Py)s PLL = pising’, pj = p;cost’
» Lorentz factor (determined from X particle):

!/ /

E p
. ! / = — = —_—
P _(E70707p)77 M7ﬁ E,

E{ = (B + Bpy), Piyj =Py + BEL), Piy = p1o

;o p1sinf B sinf
~ ypicosf+ BE;  vycosf+ /P

_P
’ﬁl_El
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@ Form an example of a decay K® — 7+ 4+ 77, let # = 7/2 in
CM-frame, then we have

pi| = 0,p1L = p1 = 207TMeV /c, E; = 250MeV

o Let E/(K?) = 1GeV in the LAB frame, so that

1000 866
=2 B= = 0.866
500 B

! — 866MeV = =
p eV/c, v 1000

@ Apply LT for Y; particle
E{ = ’y(El + Ble) = 2(250) = 500MeV
pil = v(py + BE1) = (2)(0.866)(250) = 433MeV /c
p1L = p1L = 207MeV /c — py = 479MeV/ /c

tanf = b _ 0.956 — #' = 43.7°
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Decay Rate and Lifetime

e From Fermi's golden rule (h = 1)
Wy = 27| Val* p(Er) (8)

where V4 is interaction matrix, which is not Lorentz invariant
quantity, p(Es) is density of final state, i.e.,

dn dn
p(Ef) = (dE) /dEé(E E)dE, E; = Ef (9)
— Wy = 27r/\vf,-\25(E,- — E)dn (10)
@ From basic QM, we know that
dn= TP ith the fact that E — £, 1 E (11)
d3
— Wﬁ = 27T/|Vf,| (S(E E1 — E2)( )3 (12)

U. Robkob, Physics-MUSC Lecture 13 Relativistic Kinematics Wednesday 9, June 2021 10/16



e From momentum conservation p; = p1 + p, we insert this into (12)
as a constraint condition as
d3P, d3p»
(2m)3 (2m)?
(13)

Wy = (2m)* / |Vi[20(E; — Ey — E2)0®)(5; — Py — Py)

@ Now replace V4 with the Lorentz invariant one, using the fact that

(Ynr|YnR) = 1 but (Yi|Yk) = 2E(14)
— [R) = V2E|Yng), and Mg = (@ih|V[4)) = /2E1262E; V5 (15)

Apply into (13), we have

(27)*

Wg = / |Mg|26(E; — E1 — E2)6G) (B, — Py — Py)
" . dPp
(2m)32E; (27)32E;

2E;

(16)
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@ Note that
d®p d®p>
(2m)32E; (27)32E;
where LIPS = Lorentz invariant phase space integral of the final
states.

= LIPS
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@ Note that
d*py d*p>
(2m)32E; (27)32E;
where LIPS = Lorentz invariant phase space integral of the final
states.

o Let us determine Wy in (16) in the CM-frame, here we have

= LIPS

p; = (M707070)7 Pf = (Elaﬁ)a Pg = (E2;_ﬁ)

So that
Wy = /|M 26(M — E, — E)0O) (5 )d3 P dp (17)
fi — s 2/\/’ fi 1 2 2E1 2E2
o3
= & 2M/|/\//f, 25(M — E; — B g pl (18)
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o Using the fact that E = /p2 + m2, and rewrite d3p is spherical
coordinate, we have from (18)

— 1 |2 2 2 2 2
Wﬂ—m—zm/“VW(’V’—W i =y /p o
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o Using the fact that E = /p2 + m2, and rewrite d3p is spherical
coordinate, we have from (18)

- 1 |2 2 2 2 2
Wf:—m/|Mf:’5(M_\/P +m1_\/P +m3

@ Let us do calculation of the integral

= [ 10)s(p)(F(p)) o

where

2
__P M /2 2 /2 2
glp) = EE, f(p)=M \/p + m \/P + m;
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o Let f(p*) =0, we can observe that

1
* _ 2 _ 2 2 _ _ 2
p 2M\/(M (m+ 14 m)?)(M? — (my — my)?)
and using the identity

5(p — p*)
1£'(p*)

+E1+ E
EiE

5(f(p)) = , (P =p

*

o P :
—>/=/(p)E1+52=l(p)

e Apply to (19), we get

* 1

_P— o %) ]2 —
Wi= 55 bm [ IMa(p)Pd = (20)

where 7 is a lifetime of the decay.
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Mandelstam Variables

@ From the decay X — Y71 + Y5, with the conserve energy-momentum
P# = (p1 + p2)*, the Mandelstam variables are defined to be

5:P2:(p1+p2)27 t:(P_p1)2:p§7 u:(P—pz)zZP% (21)

t— pL
s P/
L
p
@ IN the CM-frame, we observe that
)\1/2(M2 m?2 m2)

=VM, p=p" = 12 22
s=vVM, p=p Ne (22)
A(x,y,2) = x>+ y* + 2% — 2xy — 2xz — 2yx (23)

It is called Stuckelberg function.
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o Finally we have

)\1/2 M2’m2’m2
Wy = (647T2M13 2)/|Mﬁ|2dQ (24)
AV2(M2, m2 m3) s 1
- Tom2hs  IMalT =7 (25)

Note that |Mg|? always reported for some particular decay in the
pdg,Ibl.gov data base, as a function of (s, t, u)
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