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Today Topics

I Particle and anti-particle

I Chronological observations

I Particles classification

I Additional quantum numbers

I Unitary symmetry



15.1 Particle and Anti-particle

I Basic NRQM of stationary system

{x , p}Poisson = 1, x → x̂ , p → p̂ : [x̂ , p̂] = i~

H(x , p) =
p2

2m
+V (x) = E → Ĥ(x , p) = H(x̂ , p̂), Ĥ|ψ〉 = E |ψ〉

〈x |x ′〉 = δ(x − x ′), 〈n|n′〉 = δnn′ → 〈x |n〉 = φn(x)

x̂ |x〉 = x |x〉, p̂|x〉 = −i~dx |x〉(
− ~2

2m
d2
x + V (x)

)
φn(x) = Enφn(x)

For non-stationary system E → Ê = i~dt and φn(x)→ φ(x , t)(
− ~2

2m
∂2x + V (x)

)
φ(x , t) = i~∂tφ(x , t)

(
i~∂t +

~2

2m
∂2x − V (x)

)
φ(x , t) = 0→ (Ê − p̂2

2m
− V̂ )|φ〉 = 0



I Extension to RQM

E 2 = p2c2 + m2c4 → (E 2 − p2c2 −m2c4) = 0

→ (Ê 2 − P̂2c2 −m2c4)|φ〉 = 0

−~2c2
(

1

c2
∂2t − ∂2x −

m2c2

~2

)
φ(x , t) = 0

We have derived what is called Klein-Gordon equation. In the
unit in which c = 1 = ~, it appears in a simple form as

(∂2 −m2)φ(x , t) = 0 (15.1)

with ∂2 = ∂µ∂
µ = ∂2t − ∂2x , where ∂µ = (∂t , ∂x) is called

4-derivative , while ∂µ = (∂t ,−∂x)

I Since ∂2 is Lorentz scalar, so that φ(x , t) is also Lorentz
scalar function or scalar function. It can be real or complex
valued function.



I Let us determine the conserved Klein-Gordon current density

0 = φ∗(∂2 −m2)φ− φ(∂2 −m2)φ∗

= φ2∂2φ− φ∂2φ∗

= ∂µ (φ∗∂µφ− φ∂µφ∗) = ∂µj
µ = ∂t j0 + ∂x jx (15.2)

jµ = φ∗∂µφ− φ∂µφ∗ = (j0, jx) (15.3)

→ j0 = φ∗∂tφ− φ∂tφ∗ (15.4)

We observe that j0 is not positive definite. So that we cannot
interpret φ as a usual quantum probability density amplitude.
At first time KG equation is abandoned, but later it was
re-interpreted in the meaning of particle field. Its quantum
behavior need the method of second quantization, which is
determined from its Fourier expansion

φ(x , t) =

∫
d4k

(2π)4

(
a(k)e−ik·x + b†(k)e ik·x

)
(15.5)



I Second quantization

φ(x , t)→ φ̂(x , t) (15.6)

a(k)→ â(k), [a(k), a†(k ′)] = δ(k − k ′) (15.7)

b(k)→ b̂(k), [b(k), b†(k ′)] = δ(k − k ′) (15.8)

a(k) = b(k)→ φ† = φ→ real scalar (15.9)

Now j0 is interpreted to be charge density of scalar particle,
with a total particle charge

Q =

∫
d3xj0 → ±|Q|

I Back to the expression of particle energy

E 2 = p2 + m2 → E = ±
√
p2 + m2

We face with a problem of negative energy. According to
Dirac, the negative energy particle is interpreted as an
anti-particle, which exits in negative energy sea.



I Particle/antiparticle can exit in relativistic theory, with
positive/negative energy.

I Note that particle/antiparticle always created in pair, but we
have asymmetry of particle/antiparticle appearance in nature.
This still be a big problem in particle physics theory.

I Particle/antiparticle also relate to positive/negative charge,
depends on first assignment.



15.2 Chronological Particle Observations

I Electron was first known J.J. Thomson in studying structure
of matter, proton was known by E. Rutherford in studying
structure of atom and neutron was known by J. Chadwick to
complete the constituent of atomic nucleus.

I The other are discovered in particle regime. These are major
discovering
I 1932, the positron, predicted by P. Dirac, was discovered by

Carl Anderson



I Continue major discovering
I 1937, the muon was discovered by S. Neddermeyer, C.

Anderson, J. Street, and E. Stevenson
I 1947, the pion, predicted by H. Yukawa, was discovered by C.

Powell



I Continue major discovering
I 1947, the K-meson (kaon), the first strange particle, was

discovered by G. Rochester and C. Butler

I 1950, the Lambda baryon Λ was discovered by



I Continue major discovering
I 1950, the Lambda baryon Λ was discovered at Berkeley

Bevatron Facility



I Continue major discovering
I 1955, the antiproton p− was discovered by O. Chamberlain, E.

Serge, C. Wiegand, and T, Ypsilantis at Berkeley Bevatron
Facility



I Continue major discovering
I 1956, the electron neutrino νe , proposed by W. Pauli in 1930,

was discovered by F. Reines and C. Cowan



I Continue major discovering
I 1962, the muon neutrino νµ, was discovered by L. Lederman,

M. Schwartz, and J. Steinberger, done at Brookhaven NL



I Continue major discovering
I 1964, the xi baryon Ξ, another strange baryon, was discovered

at Brookhaven NL

I I will stop my list at this time, since after this it will begin the
era of quark model. I will continue my list after stating the
idea of quark model.



15.3 Particles Classification

I Particles are classified by their a) interactions, and b) spin.
Additional quantum numbers are assigned in order to protect
their elementary property.



15.4 Additional Quantum Numbers

I Additional quantum numbers are related to group of particles
of degenerated mass and spin.

I A good example is isospin (I , I3). This quantum number has
the same structure as angular momentum quantum number,
since particles are defined with state vectors from to be a
basis set of symmetry space. This symmetry is determined as
the invariant under rotation, which is generated by the
angular momentum. So these state vectors are represented in
terms of basis vector of the angular momentum operator
L2|l ,m〉 = l(l + 1)|l ,m〉, L3|l ,m〉 = m|l ,m〉, (~ = 1).

I For example, |N〉| = |I = 1
2 , I3 = ±1

2〉, N=(p,n)

|p〉 = |1/2, 1/2〉, |n〉 = |1/2,−1/2〉

I For example |Pion〉 = |I = 1, I3 = 0,±1〉, Pion = (π0, π±)



I Additional quantum numbers
I Baryon quantum number B = 1 is assigned for all baryons, and

B = −1 for their anti particles
I Strangeness S = −1 is assigned for strange particles (S = +1

for their anti-particles), and S = −2 for more strange particles,
and S = −3 for more and more strange particles



I All additional quantum numbers of baryons are collected to be
the hypercharge Y , since they are related to charge Q(e) of
baryons through Gell-Mann-Nishijina formula

Q = I3 +
1

2
Y , Y = B + S + ... (15.10)

Q(p) = +1, Q(n) = 0.

I Charges of strange mesons (∆) and baryons (Σ,Ξ,Ω)



15.5 Unitary Symmetry

I Symmetry is determined from transformation, the
transformation is a symmetry transformation when its
generator T commute with the Hamiltonian H

H|E 〉 = E |E 〉, T |E 〉 = |E ′〉

→ T{H|E 〉} = T{E |E 〉} = E{T |E 〉} = E |E ′〉

TH = HT → H{T |E 〉} = H|E ′〉 = E |E ′〉 → E ′ = E

TH = HT → TH − HT = [T ,H] = 0

〈E ′|E ′〉 = 〈E |T †T |E 〉 = 〈E |E 〉 → T †T = 1, T = e iεt

T is said to be unitary operators, and t is hermitian, results to
its unitary transformation and unitary symmetry.

I How can we determine the generator of any transformation?



I Let me see some examples of infinitesimal transformation
(~ = 1)
I Translation in x-direction

|x〉 → |x ′〉 = |x + a〉 = |x〉+ adx |x〉+ ...

= |x〉 − ia(−idx)|x〉+ ... = (1− iaPx + ...)|x〉
= w−iaPx |x〉 (15.11)

The generator is Px , i.e., H = p2/2m→ [Px ,H] = 0, free
particle is translation invariant.

I Rotation on (x,y) plane

x ′ = x cos θ + y sin θ ' x + θy , y ′ = y cos θ − x sin θ ' y − θx



I Continue examples
I Continue rotation

|x , y〉 → |x ′, y ′〉 = |x + θy , y − θx〉
= |x , y〉+ θydx |x , y〉 − θxdy |x , y〉+ ...

= |x , y〉+ iθ[x(−idy )− y(−idx)]|x , y〉+ ...

= (1 + iθ(xPy − yPx) + ...) |x , y〉
= (1 + iθLz + ...)|x , y〉 = e iθLz |x , y〉 (15.12)

Note that Lz is a generator of rotation on xy-plane or around
the z-axis.

I Unitary transformation with u = e iαt , where α is a real
parameter and t is hermitian generator.

I U(1) transformation of |φ〉, where φ is complex scalar quantity

t = 1→ u = e iα → |φ′〉 = e iα|φ〉, 〈φ′|φ′〉 = 〈φ|φ〉 (15.13)

I SU(2) transformation of |ψ〉, where ψ is spinorial quantity

|ψ〉 ≡
(
χ
η

)
→ t = 2x2 matrix (15.14)



I Continue example
I Continue unitary

I Continue SU(2) transformation

αt = αata, a = 1, 2, 3 = 22 − 1, ta =
1

2
σa (15.15)

{σa} − Pauli ′s matrices : σ1 =

(
0 1
−1 0

)
, (15.16)

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(15.17)

This means that SU(2) is just complex rotation on 2d-plane,
i.e., |nucleon〉 is a spinor

σ1|p〉 = −|n〉, σ1|n〉 = −|p〉

σ2|p〉 = i |n〉, σ2|n〉 = −i |p〉
σ3|p〉 = |p〉, σ3|n〉 = −|n〉

So that nucleon isospin symmetry is SU(2) symmetry.



I Continue example
I Continue unitary

I SU(3) transformation of |Ψ〉

|Ψ〉 =

 λ
ρ
η

→ t = 3x3 matrix (15.18)

αt = αata, a = 1, 2, 3, ..., 8 = 32 − 1, t1 =
1

2
λa (15.19)

where {λa is a set of Gell-Mann matrices. The isospin
symmetry of |Pion〉 is SU(3).


