Lecture 18 The Standard Model and Fundamental Interactions ICPY473 Nuclear Physics, MUIC, 3-Trimester, 2021

Udom Robkob, PHysics-MUSC

Monday 28, June 2021

Today Topics

- Standard model particles
- Fundamental interactions
- Toy model of particle interaction
- Electromagnetic and weak interactions
- Strong interaction

Standard model particles

Standard model particles = quarks, leptons and gauge bosons Quarks and leptons appear in three generations and six flavors

Generation	Quarks		Leptons		Anti-	Quarks	Anti-Leptons	
	Charge +2/3	Charge -1/3			Charge -2/3	Charge +1/3		
1 st	up	down	electron	electron neutrino	Anti- up	Anti- down	positron	Anti- electron neutrino
	u	d	e	ν	ū	ā	e+	v
2 nd	charm	strange	muon	muon neutrino	Anti- charm	Anti- strange	Anti- muon	Anti- muon neutrino
	с	S	μ	ν_{μ}	5	ŝ	μ̈́	$\bar{\nu}_{\mu}$
3 rd	top	bottom	tau	tau neutrino	Anti- top	Anti- bottom	Anti- tau	Anti-tau neutrino
	t	b	τ	ν_{τ}	Ŧ	b	Ŧ	$\bar{\nu}_{\tau}$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Quarks:

Quark	Symbol	Spin	Charge	Baryon Number	s	с	в	Т	Mass*
Up	U	1/2	+2/3	1/3	0	0	0	0	1.7-3.3 MeV
Down	D	1/2	-1/3	1/3	0	0	0	0	4.1-5.8 MeV
Charm	C	1/2	+2/3	1/3	0	+1	0	0	1270 MeV
Strange	S	1/2	-1/3	1/3	-1	0	0	0	101 MeV
Top	Т	1/2	+2/3	1/3	0	0	0	+1	172 GeV
Bottom	В	1/2	-1/3	1/3	0	0	-1	0	4.19 GeV(MS) 4.67 GeV(1S)

- 2

4 / 20

Leptons:

Lepton name		$Mass \\ [MeV/c2]$	Electric charge	Spin (J)	Lepton number	Electron lepton	Muon lepton	Tau lepton
			[e]		(L)	(L_e)	(L_{μ})	(L_{τ})
electron	(e ⁻)	0.511	- 1	1/2	+1	+1	0	0
electron neutrino	(v_e)	$<\!2\times10^{-6}$	0	1/2	+1	+1	0	0
muon	(μ)	105.66	- 1	1/2	+1	0	+1	0
muon neutrino	(\mathbf{v}_{μ})	$<\!2\times10^{-6}$	0	1/2	+1	0	+1	0
tau	(τ)	1776.86	- 1	1/2	+1	0	0	+1
tau neutrino	(v_{τ})	$<2 \times 10^{-6}$	0	1/2	+1	0	0	+1

<ロト < 四ト < 三ト < 三ト

3

Gauge bosons

Gauge boson	Spin	Charge	Mass	Force	
photon	γ	1	0	0	electromagnetic
W-boson	W^{\pm}	1	± 1	80.4~GeV	weak
Z-boson	Z^0	1	0	91.2~GeV	weak
gluons	g	1	0	0	strong
graviton	G	2	0	0	gravitation

< □ > < □ > < □ > < □ > < □ >

æ

Fundamental Interactions

Fundamental forces of nature

Name	Relative Strength	Range	Operates among
Gravitational Force	10 ⁻³⁹	Infinite	All objects in universe
Weak nuclear force	10 ⁻¹³	Very short, sub nuclear size (approx. 10 ⁻¹⁶)	Some elementary particle, particularly electrons and neutrino)
Electromagnetic force	10-2	Infinite	Charged particles
Strong nuclear force	1	Short nuclear size (approx. 10 ⁻⁵)	Nucleons, heavier elementary particles

э

Toy model of Yukawa-type interaction

We have learned about KG equation of $\phi(x)$,where $x \equiv x^{\mu} = (t, \vec{x})$ is spacetime coordinate, of the form

$$(\partial^2 + m^2)\phi(x) = 0, \quad \underbrace{\partial^2}_{d'Alembertian} = \partial_{\mu}\partial^{\mu} = \partial_t^2 - \underbrace{\nabla^2}_{Laplacian}$$

With generalized Euler-Lagrange equation

$$\frac{\partial \mathcal{L}}{\partial \phi^*} - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi^*} = 0$$

where \mathcal{L} is known as Lagrangian density

$$L = \int d^3x \mathcal{L}, \ \mathcal{L} = \partial_\mu \phi^* \partial^\mu \phi - m^2 \phi^* \phi$$

Note that \mathcal{L} appear in quadratic form, it contains only kinetic term and mass term.

Udom Robkob, PHysics-MUSC Lecture 18 The Standard Model and Fundam Mone

Yukawa-type interaction between massive complex scalar Φ and massless real scalar ϕ , and g is coupling constant (charge)

$$\mathcal{L} = \partial_{\mu} \Phi^* \partial^{\mu} \Phi - M^2 \Phi^* \Phi + \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \underbrace{g \phi \Phi^* \Phi}_{Yukawa \ term}$$

Feynman diagrams

Scattering diagrams

э

< ∃⇒

Scattering diagrams

Gauge field = vector field + gauge symmetry In classical EM we have 4-potential $A^{\mu}=(\phi,\vec{A})$

$$\vec{B} = \nabla \times \vec{A}, \ \vec{E} = -\nabla \phi - \partial_t \vec{A}$$

Its covariant form (field strength tensor) $F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$

$$\begin{split} F^{00} &= F^{11} = F^{22} = F^{33}, F^{0i} = \partial^0 A^i - \partial^i \phi = -E^i \\ F^{ij} &= \partial^i A^j - \partial^j A^i = -\epsilon^{ijk} B^k \\ < \Box \times < \Xi \times < = -\epsilon^{ijk} B^k = -\epsilon^$$

Gauge symmetry

$$A^{\mu} \rightarrow A^{\mu} + \partial^{\mu}\chi, \ F^{\mu\nu} \rightarrow F^{\mu\nu}$$

Gauge field dynamics

$$\mathcal{L}_{gauge\ field} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \xrightarrow[EL\ eqn.]{} \partial_{\mu} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) = 0$$

$$\partial_{\mu}A^{\mu}=0\mid_{\rm Lorentz\ gauge}\rightarrow\partial^{2}A^{\nu}=0\mid_{\rm Maxwell\ eqn.}$$
 Photon is a gauge boson. Matter coupling gauge field theory

Matter;
$$\mathcal{L}_{matter} = \partial_{\mu}\phi^*\partial^{\mu}\phi - m^2\phi^*\phi$$

Unitary trans. $u = e^{i\alpha(x)}, u^{\dagger} = e^{-i\alpha(x)}, uu^{\dagger} = u^{\dagger}u = 1$
 $\phi \rightarrow \phi' = u\phi, \phi'^* = \phi^*u^{\dagger} \rightarrow \phi'^*\phi' = \phi^*\phi$
 $\partial_{\mu}\phi \rightarrow \partial_{\mu}\phi' = \partial_{\mu}(u\phi) = u(\partial_{\mu} + i\partial_{\mu}\alpha)\phi$
 $\partial_{\mu}\phi^* \rightarrow \partial_{\mu}\phi'^* = \{(\partial_{\mu} - i\partial_{\mu}\alpha)\phi^*\}u^{\dagger}$
 $\rightarrow \partial_{\mu}\phi'^*\partial^{\mu}\phi' \neq \partial_{\mu}\phi^*\partial^{\mu}\phi$

э

With the help of gauge field

$$A^{\mu} \to A'^{\mu} = A^{\mu} - \frac{1}{q} \partial_{\mu} \alpha = u(A_{\mu} - \frac{i}{q} \partial_{\mu})u^{\dagger}$$
$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - iqA_{\mu}$$
$$D_{\mu} \phi \to D'_{\mu} \phi' = u(D_{\mu} \phi)$$
$$= uD_{\mu}u^{\dagger}u\phi = (\partial_{\mu} - i\partial_{\mu}\alpha - iqA_{\mu} + i\partial_{\mu}\alpha)\phi'$$
$$= (\partial_{\mu} - iqA_{\mu})\phi' = D_{\mu}\phi'$$

So that

$$(D'_{\mu}\phi')^{*}(D'^{\mu}\phi') = D_{\mu}\phi)^{*}(D^{\mu}\phi)$$

Model Lagrangian (scalar QED)

$$\mathcal{L} = (D_{\mu}\phi)^{*}(D^{\mu}\phi) - m^{2}\phi^{*}\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$= \partial_{\mu}\phi^{*}\partial^{\mu} - m^{2}\phi^{*}\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - qA_{\mu}J^{\mu} + q^{2}\phi^{*}\phi A_{\mu}A^{\mu}$$
$$J^{\mu} = i(\phi^{*}\partial^{\mu}\phi - \phi\partial^{\mu}\phi^{*})$$

Scalar QED diagrams

э

Scalar QED diagrams

Quarks and leptons are Dirac particles, represented by Dirac spinors (solution of Dirac equation)

Derivation of Dirac equation (RQM, $c = 1 = \hbar$), we start form linearized relativistic energy-momentum relation

$$E = \vec{\alpha} \cdot \vec{p} + \beta m \xrightarrow{constraint} E^2 = p^2 + m^2$$

$$E^2 = \frac{1}{2} (\alpha_i \alpha_j + \alpha_j \alpha_i) p_i p_j + (\alpha_i \beta + \beta \alpha_i) p_i + \beta^2 m$$

$$\alpha_i \alpha_j + \alpha_j \alpha_i = 2\delta_{ij}, \ \alpha_i \beta + \beta \alpha_i = 0, \ \beta^2 = 1$$

We observe that $\{\alpha_i\}, \beta$ are not numbers but square matrices. Dirac observe that

$$\alpha_i = \left(\begin{array}{cc} 0 & \sigma^i \\ \sigma^i & 0 \end{array}\right)_{4x4}, \ \beta = \left(\begin{array}{cc} 1_2 & 0 \\ 0 & -1_2 \end{array}\right)_{4x4}$$

where $\{\sigma^i\}$ is a set of Pauli matrices and 1_2 is 2x2 identity matrix. Quantum equation of Dirac energy is

$$E - \vec{\alpha} \cdot \vec{p} - \beta m = 0 \rightarrow (i\partial_t + i\vec{\alpha} \cdot \nabla - \beta m)\Psi(x) = 0$$
$$\gamma^{\mu} = (\gamma^0, \vec{\gamma}) \rightarrow \gamma^0 = \beta, \gamma^i = \beta \alpha^i, \ \beta^2 = 1_4$$
$$(i\gamma^{\mu}\partial_{\mu} - m1_4)\Psi = 0, \ \Psi = \left(\begin{array}{c} \chi_R\\ \bar{\psi}_L \end{array}\right)$$

Note that Ψ is bi-spinor, and χ,ψ are spinors. Dirac Lagrangian is

$$\mathcal{L} = \bar{\Psi} (i\gamma^{\mu}\partial_{\mu} - m)\Psi$$

Electromagnetic interactions

Quantum electrodynamics of QED

$$\mathcal{L} = \bar{\Psi}(i\gamma^{\mu}D_{\mu} - m)\Psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \mathcal{L}_{0} + \mathcal{L}_{int}$$
$$\mathcal{L}_{int} = -iq\bar{\psi}\gamma^{\mu}\Psi A_{\mu}$$

QED diagrams, QED = quantum of electromagnetic interactions, i.e., $\gamma\gamma\to\gamma\gamma$ scattering

ecture 18 The Standard Model and Fundam.

Light-by-light scattering with intact protons at the LHC: from Standard Model to New Physics - Fichet, Sylvain et al - arXiv:1411.6629

Udom Robkob, PHysics-MUSC Lecture 18 The Standard Model and

Weak interaction

Fermi's theory of weak interaction

Weak gauge bosons masses at LEP and LHC at CERN

Udom Robkob, PHysics-MUSC

Lecture 18 The Standard Model and Fundar

Weak gauage bosons B^{μ} =Proca particle, with Lagrangian

$$\mathcal{L} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} - \frac{1}{2}M^2B_{\mu}B^{\mu}, \ G^{\mu\nu} = \partial^{\mu}B^{\nu} - \partial^{\nu}B^{\mu}$$

Weak interaction with W^{\pm} and Z^{0} weak gauge bosons

Electro-weak symmetry: photon-mediated Coulomb force is like W-mediated weak force

Weak interaction of quarks

Weak decays

Udom Robkob, PHysics-MUSC

Lecture 18 The Standard Model and Fundar

Next lecture:

- strong interaction
- meson decay with flavors oscillation

э