Lecture 23 Aspects of New Physics after LHC ICPY473 Nuclear Physics, MUIC, 3-Trimester, 2021

Udom Robkob, Physics-MUSC

July 14, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Today Topics

- Higgs physics
- Beyond the standard model physics

Higgs Physics

- Why do we need Higgs particle? According to the similarity of QED and Weak interaction, except the massless photon γ and the massive vector bosons W[±], Z⁰.
- Energy range of QED in MeV, while weak interaction is GeV, so that something seem to be continuity from weak to QED by lowering the energy scale
- In classical physics, lowering in energy results to phase transition, i.e., gases condense into liquids and crystallize into solids, and all phase transitions are described by symmetry breaking mechanism

- Goldstone's theorem: for breaking of any continuous symmetry there will correspond with massless boson, it is called Goldstone's boson
- For magnetic materials, there are randomly orientation of magnetic moments (higher symmetry) after magnetization (directional oriented of magnetic moments) there appear with magnon as its elementary excitation
- For Helium gas, after Bose condensation there appear with rotons as its elementary excitation

Higgs mechanism: for breaking of any continuous symmetry there will correspond with massive boson, it is called Higgs's boson

With $D_{\mu} = \partial_{\mu} - iqA_{\mu}$ and $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, Higgs Lagrangian is

$$\mathcal{L} = [D_{\mu}\phi]^*[D^{\mu}\phi] - \mathcal{V}(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

where $\mathcal{V} = -\mu^2 \phi^* \phi + \lambda (\phi^* \phi)^2$ is symmetry breaking potential

Gauge boson get mass from Higgs as

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} \to -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu}, \quad m^2 = g^2v^2$$

where $v=\langle \phi \rangle$ is the vacuum expectation value of the Higgs field

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Gauge boson get mass from Higgs as

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} \to -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu}, \quad m^2 = g^2v^2$$

where $v=\langle \phi \rangle$ is the vacuum expectation value of the Higgs field

Where is Higgs? Higgs production phenomenology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Higgs production cross section

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

> The Higgs existence is observed through its decay remnants

Higgs detection at CMS-CERN

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Higgs detection at ATLAS-CERN

996

Celebration on October 2, 2015

くりゃく 聞き ふぼき ふぼう ふうや

Beyond the Standard Model Physics

Problems with standard model

Too many parameters

me	Electron	mass	511	keV		
mμ	Muon mas	s	105.7 M	eV		
mτ	Tau mass	5	1.78 Ge	v		
mu	Up quark	mass	μ MS = 2	GeV	1.9 MeV	
md	Down qua	ark mass	μMS	= 2 Ge	v 4.4	MeV
ms	Strange	quark m	ass µMS	= 2 Ge	V 87	MeV
mc	Charm qu	uark mas	s µMS	= mc	1.32 Ge	v
mb	Bottom d	quark ma	ss µMS	= mb	4.24 Ge	v
mt	Top quar	rk mass	On-shel	1 schem	e 172	.7 GeV
012	CKM	12-mixi	ng angle		13.1°	
823	СКМ	23-mixi	ng angle		2.4°	
013	CKM	13-mixi	ng angle		0.2°	
δ	CKM CP-	violatin	g Phase	0.	995	
g1	or g'	U(1) ga	uge coup	ling	µMS = m	z 0.35
g2	or g	SU(2) g	auge cou	pling	µMS = m	Z 0.65
g3	or gs	SU(3) g	auge cou	pling	µMS = m	z 1.22
BQC	D QCD	vacuum	angle	~0		
v	Higgs va	acuum ex	pectatio	n value	246	GeV
mH	Higgs ma	ass	~ 125 G	eV (ten	tative)	

• $\alpha_1 = (5/3)g'^2/(4\pi) = 5\alpha/(3\cos^2\theta_W)$ • $\alpha_2 = g^2/(4\pi) = \alpha/\sin^2\theta_W$ • $\alpha_3 = g_s^2/(4\pi)$ • $\alpha_1(M_Z) = 0.017$ • $\alpha_2(M_Z) = 0.034$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$\alpha_3(M_Z) = 0.118 \pm 0.003$$

• Mass hierarchy problem of δm^2 .

Problems with standard model (cont.)

Asymmetry of particles and anti-particles

Figure 2. Asymmetric decay of a symmetric state.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problems with standard model (cont.)

Asymmetry of particles and anti-particles

Beyond the standard model

g

ĩ

W

Higgsino

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

supersymmetry unification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Extra dimensions, braneworld extension

Randall-Sundrum model

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �