ICPY473 Nuclear Physics

MUIC, Third Trimester 2020-21U. Robkob, Physics-MUSCWednesday 19, May 2021

8 Nuclear Reactions

To make change of atomic nucleus by nuclear interaction, using collision process.

8.1 Reaction equation

Let T-target nucleus, P-projectile particle, R-residue nucleus from the reaction and x-emitted particle after reaction. The nuclear reaction equation reads

$$P + T \to R + x(s) \quad or \quad T(P, x)R$$

$$(8.1)$$

For example of ${}^{14}N(\alpha, p){}^{17}O$, it was first done by E. Rutherford in 1910. The reaction energy Q is calculated from mass defect as

$$Q = (M_T + M_P - M_R - M_x)c^2$$
(8.2)

For examples, see figure (8.1).

Reaction	Measured Q (MeV)	Reaction	Measured Q (MeV)
$^{2}H(\mathbf{n},\mathbf{\gamma})^{3}H$	6.257 +/- 0.004	⁹ Be(p,α) ⁶ Li	2.132 +/- 0.006
2 H(d,p) 3 H	4.032 +/- 0.004	¹⁰ Β(n,α) ⁷ Li	2.793 +/- 0.003
⁶ Li(p,α) ³ H	4.016 +/- 0.005	$^{10}B(\mathbf{p},\mathbf{\alpha})$ ⁷ Be	1.148 +/- 0.003
⁶ Li(d,p) ⁷ Li	5.020 +/- 0.006	$^{12}C(n, \gamma)^{13}C$	4.948 +/- 0.004
⁷ Li (p,n) ⁷ Be	-1.645 +/- 0.001	¹³ C(p,n) ¹³ N	-3.003 +/- 0.002
$^{7}Li (p, \alpha)^{4}He$	17.337 +/- 0.007	* ¹⁴ N(p,n) ¹⁴ C	-0.627 +/- 0.001
$^{9}Be(\mathbf{n},\mathbf{\gamma})^{10}Be$	6.810 +/- 0.006	14 N(n, γ) 15 N	10.833 +/- 0.007
$^{9}Be (\gamma,n)^{8}Be$	-1.666 +/- 0.002	¹⁸ 0(p,n) ¹⁸ F	-2.453 +/- 0.002
9 Be $(\mathbf{d},\mathbf{p})^{10}$ Be	4.585 +/- 0.005	$^{19}F(p,\alpha)^{16}O$	8.124 +/- 0.007

Figure 8.1: Nuclear reaction energy.

8.2 Reaction kinematics

In LAB-frame, fixed target, from energy conservation condition we have

$$M_P c^2 + K_P + M_T c^2 = M_R c^2 + K_R + M_x c^2 + K_x$$
(8.3)

$$Q = (M_P + M_T - M_R - M_x)c^2 = K_R + K_x - K_P$$
(8.4)

For Q > 0 it is called *exoergic reaction*, while for Q < 0 it is called *endoergic reaction*. From the reaction diagram below, see figure (8.2), the momentum conservation says that

Figure 8.2: Nuclear reaction diagram.

$$M_p v_p = M_x v_x \cos \theta + M_R v_R \cos \phi \tag{8.5}$$

$$0 = -M_x v_x \sin \theta + M_R v_R \sin \phi \tag{8.6}$$

With $p = Mv = \sqrt{2MK}$, and using the fact that $\cos^2 \phi + \sin^2 \phi = 1$, we have

$$M_P K_P - 2(M_P K_P M_x K_x)^{1/2} \cos \theta + M_x K_x = M_R K_R$$
(8.7)

Replacing K_R in term of Q, we get

$$Q = K_x \left(1 + \frac{M_x}{M_R} \right) - K_P \left(1 - \frac{M_P}{M_R} \right) - \frac{2}{M_R} \sqrt{M_P K_P M_x K_x} \cos \theta \quad (8.8)$$

The prediction of Q from measured K_x in θ -direction. Conversely we have

$$\sqrt{K_x} = \sqrt{M_x M_P K_P} \cos \theta \pm \{M_x M_P K_P \cos^2 \theta + (M_R + M_x) [M_R Q + (M_R - M + P) K_P] \}^{1/2} / (M_x + M_R)$$
(8.9)

The prediction of K_x in θ -direction from the calculated Q. This shows the double-valued of K_x .

8.3 Threshold energy

In case of Q < 0 reaction, we need threshold energy of the projectile particle $K_P = K_{th}$ to initiate the reaction. Let us determine this in CM-frame

$$K_{CM} = \frac{M_P + M_T}{2} v_{CM}^2, \quad v_{CM} = \frac{M_P}{M_P + M_T} v_P \tag{8.10}$$

$$\to K_{CM} = \frac{1}{2} M_P v_P^2 \frac{M_P}{M_P + M_T} = K_{LAB} \frac{M_P}{M_P + M_T}$$
(8.11)

with $K_{LAB} = K_P$. Since the dissipate energy in the reaction is $E_{dis} = K_{LAB} - K_{CM}$, so that the energy available for the reaction is $E_{dis} + Q \ge 0$. At the threshold $E_{dis-th} + Q = 0$, then

$$K_{LAB} - K_{CM} = K_{LAB} \left(1 - \frac{M_P}{M_P + M_T} \right) = K_{LAB} \frac{M_T}{M_P + M_T}$$
 (8.12)

$$\rightarrow E_{dis-th} = K_{LAB-th} \frac{M_T}{M_P + M_T} \rightarrow K_{th} = -Q \frac{M_T}{M_P + M_T} \qquad (8.13)$$

For example of ${}^{14}N(\alpha, p){}^{17}$), with Q = -1.19MeV, so that

$$K_{\alpha-th} = -(-1.19MeV)\frac{4+14}{14} = 1.53MeV$$

8.4 Reaction stages

According to V. Weisskopf

Figure 8.3: Nuclear reaction stages.

8.5 Reaction cross section