Lecture 6 Nuclear Reactions (Cross Section) SCPY322 Nuclear and Particle Physics Second Semester 2020-21

Udom Robkob, Physics-MUSC

Friday 12, March 2021

Basic Nuclear Reaction Description

• Nuclear reaction equation

$$a + A \rightarrow B + b + Q$$
, or $A(a, b)B$

• Nuclear reaction energy Q (in the lab. frame (fixed target)):

$$Q = [m_a + M(A) - m_b - M(B)]c^2 = T_b + T_B - T_a$$

 $Q>0 \rightarrow$ excergic, $Q<0 \rightarrow$ endoergic.

Reaction	Measured Q (MeV)	Reaction	Measured Q (MeV)
$^{2}H(n,\gamma)^{3}H$	6.257 +/- 0.004	⁹ Be(p,α) ⁶ Li	2.132 +/- 0.006
² H(d,p) ³ H	4.032 +/- 0.004	¹⁰ Β(n,α) ⁷ Li	2.793 +/- 0.003
$^{6}Li(p,\alpha)^{3}H$	4.016 +/- 0.005	$^{10}B(p,\alpha)$ ⁷ Be	1.148 +/- 0.003
⁶ Li(d,p) ⁷ Li	5.020 +/- 0.006	${}^{12}C(n, \gamma){}^{13}C$	4.948 +/- 0.004
⁷ Li (p,n) ⁷ Be	-1.645 +/- 0.001	$^{13}C(p,n)^{13}N$	-3.003 +/- 0.002

3 N K 3 N

• In the lab. frame (fixed target)

• With the conservation of energy and momentum, the kinetic energy of emitted particle in any direction θ will be derived in term of Q in the form

$$T_b^{1/2} = \left\{ [m_a m_b T_a]^{1/2} \cos \theta \pm [m_a m_b T_a \cos^2 \theta + (m_b + M_B) \{ M_B Q + (M_B - m_a) T_a \}]^{1/2} \right\} \times \frac{1}{m_b + M_B}$$
(1)

• This is a quadratic function of T_b as function of the known T_a, Q , and all masses.

Figure 11.2 (a) T_a vs T_b for the reaction ${}^3H(p, n){}^3He$. The inset shows the region of double-valued behavior near 1.0 MeV. (Krane)

・ロト ・四ト ・ヨト ・ヨト

- Let us determine an expression of T_b :
 - If Q < 0, there exists possibility of T_b to be double values at the angle $0 < \theta < \pi/2$. At the double-valued of T_b , T_a will fall into the range, determined at $\theta = 0$,

$$\frac{m_b + M_B}{M_B + m_b - m_a} < \frac{T_a}{|Q|} < \frac{M_B}{M_B - m_a}$$

The lower limit, shows the minimum of T_a for the reaction to occur. It is called *threshold energy* T_{th} , so that

$$T_{th} = \frac{-Q(m_b + M_B)}{M_B + m_b - m_a}$$

The upper limit of this range is called T'_a , so that

$$T_a' = \frac{-QM_B}{M_B - m_a}$$

3 1 4 3 1

Udom Robkob, Physics-MUSC Lecture 6 Nuclear Reactions (Cross S Friday 12, March 2021 5/22

- Continue to determine T_b :
 - There is also exist the maximum scattering angle in the double-valued range of T_b, which is determined from the vanish of term in the square root, as

$$\cos^2 \theta_{max} = -\frac{(m_b + M_B)\{M_B Q + (M_B - m_a)T_a\}}{m_a m_b T_a}$$

• If Q > 0, then

$$\sqrt{m_a m_b T_a} > \sqrt{m_a m_b T_b \cos^2 \theta + (m_b + M_B)} \{ M_B Q + (M_B - m_a) \}$$

Therefore, we always choose the positive sign in eq.(1) and there is no possibility for the double value of T_b , see the following figure.

• To determine Q from the known T_a, T_b in the experiment, we will have

$$Q = T_b \left(1 + \frac{m_b}{M_B} \right) - T_a \left(1 + \frac{m_a}{M_B} \right) - 2\cos\theta \left(\frac{m_a m_b}{M_B^2} T_a T_b \right)^{1/2}$$

3 × 4 3 ×

Figure 11.3 T_a vs T_b for the reactions $^3\text{He}(n,p)^3\text{H}$ and $^{14}\text{N}(n,p)^{14}\text{C}.$ No double-valued behavior occurs.

ヘロト ヘヨト ヘヨト ヘヨト

Nuclear Reactions Type

• According to W. Weisskopf, the nuclear reactions are classified into the three stages as

A 3 5 4 3 5

< (T) >

3

Reaction Cross Section

• According nuclear reaction experiment

Basic experimental arrangement to determine the cross section of a nuclear reaction. (a) Side view. (b) View along beam direction.

We can determine the beam flux reduction $\Delta \Phi$ as

$$\Delta \Phi = -\Phi n \sigma \Delta x, \quad n = \frac{N}{V} \tag{2}$$

where σ is called *cross section* of the nuclear reaction.

• From equation (2), by direct integration we get the transmission flux

$$\Phi_{trs}(x) = \Phi(0)e^{-n\sigma x} \tag{3}$$

So that the absorbed flux will be

$$\Phi_{abs}(x) = (1 - e^{-n\sigma x})\Phi(0) \tag{4}$$

2

• From equation (2), by direct integration we get the transmission flux

$$\Phi_{trs}(x) = \Phi(0)e^{-n\sigma x} \tag{3}$$

So that the absorbed flux will be

$$\Phi_{abs}(x) = (1 - e^{-n\sigma x})\Phi(0) \tag{4}$$

• The reaction cross section can be determined from single particle collision

• Its definition is

$$d\sigma = \frac{\text{transition rate into solid angle } d\Omega}{\text{incident flux } \Phi}$$
(5)
$$\rightarrow \frac{d\sigma}{d\Omega} = \frac{W_{fi}}{\Phi} \rightarrow \sigma_{tot} = \int \left(\frac{d\sigma}{d\Omega}\right) d\Omega$$
(6)

Note that $[\sigma] = m^2 \to 1 \ barn = 10^{-28} m^2 = 10^{-24} cm^2 = 100 fm^2$

• The number of particles will be detected, emitted from nuclear reactions, in particular direction per unit solid angle will be

$$\frac{dN}{d\Omega} = \Phi n \left(\frac{d\sigma}{d\omega}\right) dx$$

Udom Robkob, Physics-MUSC Lecture 6 Nuclear Reactions (Cross S Friday 12, March 2021 11/22

• • • • • • • • •

• The elastic Coulomb collision differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{(Z_1 Z_2 k_e e^2)^2}{16E^2 \sin^4(\theta/2)}$$

ъ

э

• Direct nuclear reaction differential cross section can be determined from hard sphere collision as

• From classical theory, we will have

$$\sigma_{tot} = \pi (R+r)^2$$

Udom Robkob, Physics-MUSC Lecture 6 Nuclear Reactions (Cross S Friday 12, March 2021 13/22

э

- (E)

• Direct nuclear reaction differential cross section can be determined from hard sphere collision as

• From classical theory, we will have

$$\sigma_{tot} = \pi (R+r)^2$$

• From quantum theory, we will have

$$\sigma_{tot} = \pi \lambda^2 (l_{max} + 1)^2$$

where $\lambda = \frac{\lambda}{2\pi}$, $l_{max} = \frac{R}{\lambda}$

• Compound nuclear reaction cross section, derived from the optical theorem of complex potential $V = V_0 + iV_1$, in order to produce an absorption, we have

$$\sigma_{ab}(E,J) = \pi \lambda^2 \sum_{\lambda} \frac{\Gamma_{\lambda a} \Gamma_{\lambda b}}{(E - E_{\lambda})^2 + \frac{1}{4} \Gamma_{\lambda}^2}$$
(7)

where $\Gamma_{\lambda} = \Gamma_{\lambda a} + \Gamma_{\lambda b}$. This is called *Breit-Wigner formula*.

Udom Robkob, Physics-MUSC Lecture 6 Nuclear Reactions (Cross S Friday 12, March 2021 15/22

イロト イヨト イヨト イヨト

Exercises

a.
$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{141}_{56}Ba + {}^{?}_{} + 3 {}^{1}_{0}n$$

b. ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{?}_{} + {}^{137}_{52}Te + 2 {}^{1}_{0}n$
c. ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{?}_{} + {}^{137}_{55}Cs + 3 {}^{1}_{0}n$
d. ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{94}_{38}Sr + {}^{140}_{54}Xe + {}^{?}_{} {}^{1}_{0}n$

(4回) (4回) (4回)

イロト イヨト イヨト イヨト

Exercises

Complete the following fusion reactions:

(a)
$${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + _$$

(b) ${}_{1}^{2}H + _ \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$
(c) ${}_{1}^{1}H + {}_{2}^{3}He \rightarrow _ + {}_{-1}^{0}e + {}_{0}^{0}v$
(d) ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{3}H + _$

(4月) キョン イヨン

2

Nucleosystthesis on Star

- Triple-alpha (1) (He burning) (2)
- Carbon burning
- Oxygen burning
- Silicon burning $^{16}O + ^{16}O \rightarrow ^{32}S + \gamma$ $\rightarrow ^{31}P + ^{1}H$ $\rightarrow ^{28}Si + ^{4}He$ $\rightarrow ^{31}S + n$ $\rightarrow ^{24}Mg + 2 ^{4}He$.
- ${}^{4}\text{He} + {}^{4}\text{He} \leftrightarrow {}^{8}\text{Be} ,$ ${}^{8}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma .$ ${}^{12}\text{C} + {}^{12}\text{C} \rightarrow {}^{24}\text{Mg} + \gamma$ $\rightarrow {}^{23}\text{Na} + {}^{1}\text{H}$ $\rightarrow {}^{20}\text{Ne} + {}^{4}\text{He}$ $\rightarrow {}^{23}\text{Mg} + n$ $\rightarrow {}^{32}\text{S} + \gamma$ $\rightarrow {}^{16}\text{O} + 2{}^{4}\text{He} .$

3

⁵⁶Ni \rightarrow ⁵⁶Fe + 2e⁺ + 2v_o.

At the end of Carbon burning

イロト イヨト イヨト イヨト

3

Nuclear Spallation

