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1 Special Relativity (SR)

SR has had been originated by Einstein postulates:

• Newton’s laws of motion still valid for energetic motion

• All observers observe the same light speed c

This results to our two basic observations

• time dilation dt = γdτ , when γ = (1 − β2)−1/2 is a relativistic (Lorentz)
factor and β = u/c a relative speed of observation. Note that dτ is called
proper times, a time duration have been measured from a clock at rest.

• length contraction dl = dl0/γ

Another thing we have to be careful about giving any physical interpretation is
simultaneity of any two physical events.

2 Lorentz Transformations (LT)

In order to do mathematical calculation about SR, we have to assign the spec-
time coordinates (ct, x, y, z) and apply with Lorentz transformations between
two reference frames under have relative motion u in z-direction, as

ct = γ(ct′ + uz′/c), z = γ(z′ + ut′), x = x′, y = y′ (1)

ct′ = γ(t− uz/c), z′ = γ(z − ut), x′ = x, y′ = y (2)

Exercise 1: Derive expressions of time dilation and length contraction from
these LT, using the concept of simultaneity.

3 Covariant Formulation (CF)

To get a unique expression of the LT (and SR) we use the covariant formulation.
Let us move onto the four dimensional Minkowski space M4, with coordinate
xµ = (x0, x1, x2, x3) and equipped the metric tensor gµν = diag.(+1,−1,−1,−1).
On this space, we calculate the distance in the form

ds2 = gµνdx
µdxν = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

And ds2 is invariant on any reference frames onM4. Note that xµ is known as
a 4-vector.

1



Apply to LT, we assign with x0 = ct, (x1, x2, x3) = ~x, so that we have a
4-position xµ = (ct, ~x) and

ds2 = (cdt)2 − (d~x)2

The invariant property

ds20 = (cdτ)2 = (cdt)2 − (d~x)2 = (cdt)2γ = ds2

We observe time dilation formula dτ = γdt.

4 Relativistic Kinematics (RK)

We start with the 4-position

xµ = (ct, ~x)→ x2 = τ2

Then we define the 4-velocity as

vµ =
dxµ

dτ
= γ

d

dt
(ct, ~x) = γ(c,~v)→ v2 = c2 (3)

The 4-momentum is now written in the form

pµ = mvµ = (γmc, γm~v) ≡ (E/c, ~p) (4)

where we have defined the relativistic energy E = γmc2 and relativistic mo-
mentum ~p = γm~v, satisfy the relativistic energy-momentum relation

E2 = ~p2c2 +m2c4 (5)

From (4), this leads to p2 = m2c2. Two basic of SR for LT of energetic particle
can be derived from these formulations are

γ =
E

mc2
, ~β =

~p

E

Exercise 2: Note that mc2 is known as the rest mass energy of a particle of
mass m. Let calculate the rest mass energies of and electron (e) and a proton
(p), in the unit of eV with appropriate order.

Exercise 3: Calculate the momentum of and electron at energies of (a) 50
keV, (b) 5 MeV, and (c) 500 MeV, in the unit of MeV/c.

Exercise 4: Calculate the velocity of a proton moving with an energy of 7
TeV, within the LHC tunnel.
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5 RK of Two-Particle Decays

In a process of heavy particle (mother) of mass M decays into two light particles
(daughters) of massesm1,m2, thinks we want to know are energies and momenta
of the daughters, from the known mother. For simplicity, let us working in
the unit in which c = 1, restoring the SI unit can be done with insertion of
appropriate fundamental constants under dimensional analysis.

Basically, we first analyze this process in the CM frame, where the mother
stay at rest and the two daughters move in opposite directions with the same
momentum.

Figure 1:

The kinematics of this decay is determined from the condition of energy-
momentum conservation, which is simply written in the form

Pµ = (p1 + p2)µ (6)

In the CM frame, we have

Pµ = (M,~0), pµ1 = (E1, ~p), p
µ
2 = (E1,−~p)

Thus we have

M = E1 + E2 =
√
p2 +m2

1 +
√
p2 +m2

2 (7)

Solving this equation for p, we get

p =
1

2M

√
[M2(m1 −m2)2][M2 − (m1 +m2)2] (8)

This shows us the decay condition that M ≥ m1 +m2.
To complete out calculation for E1, E2, we have

E1 =
1

2M
(M2 +m2

1 −m2
2), E1 =

1

2M
(M2 −m2

1 +m2
2) (9)

For special case of two identical daughters of mass m, we will have E1 = E2 =
1
2M and p = 1

2

√
M2 − 4m2
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Exercise 5: Let calculate the energy and momentum of the two Pions from
the Kaon decay K0 → π+π−, in the CM frame. (Find the corresponding masses
by yourself.)

Back to the real life, this decay occurs in the LAB frame from the energetic
mother.

Figure 2:

First we have to write the CM 4-momenta of the daughters as

pµ1 = (E1, p⊥, pz), p
µ
2 = (E2,−p⊥, pz)

Next assign the LAB frame 4-momenta

P ∗µ = (E, 0, 0, P ), p∗µ1 = (E∗1 , p
∗
1⊥, p

∗
1z), p

∗µ
2 = (E∗2 , p

∗
2⊥, p

∗
2z)

We can have the LT factors as

γ =
E

M
, β =

P

E
(in z− direction) (10)

Apply the LT, we have

E∗1 = γ(E1 − βpz), p∗1z = γ(pz − βE1), p∗1⊥ = p⊥ (11)

Exercise 6: Derive expressions of the LT of daughter particle 2.
Let us determine the relation of emitting angles

p⊥ = p sin θ1, p
∗
1⊥ = p∗ sin θ′1, p

∗
1z = p∗ cos θ′1

tan θ′1 =
p sin θ1

γ(p cos θ1 − βE1)
=

sin θ1
γ(cos θ1 − βv1)

, v1 =
|~p|
E1

(12)

Exercise 6: Determine the decay K0 → π+π− with the Kaon energy of
1.0GeV in the LAB frame. What is the emitting angles of Pions in the LAB
frame, when we determine the 900 emitting direction in the CM frame?

4



Exercise 7: Determine the decay Λ0 → p+π−, with the Lambda energy of
2.2GeV in the LAB frame. Let determine this decay in forward direction.

Exercise 8: Determine the decay π0 → γγ, with the Pion energy of 500 MeV,
in forward direction.
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