SCPY322 Nuclear and Particle Physics
Friday 2, April 2021

2 Relativistic Kinematics 11

2.1 Reviews of the last lecture

Working in the unit in which ¢ =1 = h.
We have derived the 4-momentum p* = (E, p), such that
p2:m2’ E:’ym7 ﬁ:fym/l_f
when v = (1 — 8?)7Y/2, B =v/c, so that
j_p _FE
ﬁ - EJ 7 - m

Energy-momentum conservation means (p; +ps+...)* = constant, i.e., before
and after.
LT (in z-direction) of 4-momentum is

E' =~(E - Bp.), p. =~(p. — BE), p', =p1

E=~(E"+Bp.), p- =7(p: +BE'), p1 =D}
In particle physics CM-frame moves relative to the rest LAB-frame, relative
to an observer.

N/Ppnh
P,M K/\ p2,m2
Ps, My

Figure 2.1:

2.2 Three-body decays

Let us determine a decay of a heavy particle of mass M into three particles
of masses my, mg, ms, see figure (2.1) above. The conservation of energy-
momentum is

P" = (p1 + p2 + p3)* (2.1)
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Let us define the following Lorentz invariant quantities:

s = P*=M? (2.2)
s1 = (P—p1)° = (p2+ps)? (2.3)
sy = (P—p2)®=(p1+ps)? (2.4)
s3 = (P—p3)® = (p1+p2)° (2.5)

Their meanings are /s is the invariant mass of the mother particle, /s is
the invariant mass of a system of particles 2+3, /s is the invariant mass of
a system of particles 143, and /s3 is invariant mass of a system of particles

14-2. The three invariants s1, so, s3 are not independent, we can observe from
(2.2-2.5) that

s1+ 859+ 83 = M? +m? +m3 +m3 (2.6)

Fxercise 2.1: Derive this expression explicitly.
In the rest frame of mother particle, we will have

= M?*+m? - 2ME, (2.7)
with By = /p? + m?. Since E; > my, thus we can observe from (2.7) that
sl,max = (M — m1)2 (28)

To find 1 in, We have to evaluate s; in the rest frame of subsystem (2,3),
the Jackson frame !, which is denote as

s1=(p2 +p3)* = (ES+ E9)? > (my +m3)* = S1.min (2.9)

We can similar formula for s;,s3. In summary we have the ranges of
possible sy, o, 53 from the decay as

51 € [(mg +m3)?, (M —my)?] (2.10)
So € [(m1 + m3)2, (M — m2)2] (211)
S3 € [(m1 + m2)2, (M — 7TL3)2] (212)

In the Jackson frame of a subsystem (2,3), we also observe from energy-
momentum conservation that pj = P°; thus we have

2
s1= (E° — E0)? = (\/MQ + P?—\/m? +p§2) (2.13)

n this frame we denote ph = (F$,p3) and p4 = (ES,p3), in which p§ = —p5.
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Solving for p¢?, we have

P22 L [s1 — (M —my)3[s1 + (M +my)?] = L/\(31,]\42,171%) (2.14)

Lo 4_31 481
where
Mz,y,2) = 2> +y* + 22 — 22y — 202 — 2y2 (2.15)
is known as Stueckelberg kinematics function. The corresponding expressions
for p$?, p3? are
02 02 1 2 2
by =Py = 4_)\(517 my, mg) (2.16)
51

Ezercise 2.2: Derive details expressions of p3? and p$2.
Next let us determine the invariant s, in the Jackson frame of subsystem
(2,3) we observe that

s = (p1+ p3)? = mi + mj + 2(E{ES — pip5 cos @) (2.17)

If s; is fixed, we can see that s depends only on v and shows up its maximum
S94 = 52mas ad mMinimum sy = 59, values as

Sox = mi+m3 + 2(EVES £ pip3) (2.18)

Rewrite EY, £ in terms of s, as

1
(s —s1— m?) ES = (s1 — mg + mg) (2.19)

PNG ’ 2,/51

Then we have from (2.18)

1
Soxt =m%+m§+2—81 [(s — 51+ mi)(s1 — m3 + m3)

i)xl/Q(s, s1, mf))\lm(sl, m%, mg)] (2.20)

The curve defined by (2.20) is defined the boundary of the Dalitz plot on
the (s1,s2) plane, see figure (2.1). See an example of Dalitz plot of Dt —
K~ D' D% decay, at https://arziv.org/pdf/1902.05884.pdf.

Ezercise 2.3: Determine the Dalitz plot of K+ — n%u*v, decay.
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Figure 2.2:

2.3 Decay rate
-TBA-

2.4 Two-particle collisions

Let us determine two-to-two particle collision a +b — ¢+ d, see figure (2.3).

cipa) clps)
/./’
alp) (i hipa) alp) bl -/'9/
dlpy) dipy)
[a) (b

Figure 2.3:

The energy-momentum conservation reads

(p1 +p2) = (ps + pa)* (2.21)



In the LAB frame, we have
pllL = (EIJ 07 07p1>7 pg = (m2, 0, 07 0)

= (E3,0,pssind, pycos ), py = (Ey, 0, —pysin,, py cos0,)

In the MC frame we have

”11 = (EL 0, Ovpll)v p/g = (Eéa 0,0, _p/2)’ pl2 = pll (2'22)
p't = (E%,0,pysind’ pycos @), p'y = (E),0,—p)sind, —p)cosd) (2.23)

with 0/ = 7 — 6" and p, = p;. The Lorentz invariant quantity s is

s = (p} + ph)* = (B} + E4)? (2.24)
El =\/pE+m2, Ey=\/p?+m3 (2.25)
1
—p) = [s — (m1 —my)?][s — (M1 + m2)? (2.26)

ONE

From energy-momentum conservation, we also have

s = p3 + p4) (E, + E,) (2-27)
=\/p? +mi, E)=/p§+m3 (2.28)
mzi—b—mrmmm4m+wm (2.29)

2y/s

Back to the LAB frame, we have

s = (p1+p2)? =mi +mj =2myE, (2.30)

S — m2 m2
— B = —2;1 2 =\ /pi+m3 (2.31)
2

%mz?%%b—WrWMﬂ&%W+mﬁ]

1
= Q_WQAl/Q(S,m%’m%) (232>

From (2.26) and (2.32), we observe that

2
ml,z -+ m2E1

7 (2.33)

/
—>E12_
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To derive the LT parameters, let us determine the total 4-momentum
pH = (p1 + p2)¥, its LT in z-direction is

Ey+my = %m((Ei + Eé) + Ucm(pll +p/2)) = '7cm\/g (2.34)
—— ——
Vs =0
Ey+meo b1
cm — s and Ven = ———— 2.35
" \/g E1 -+ Mo ( )

Let us test by calculating the LT of E) 5 — E ,, we have

2
my + m2E1

Bl = Yem(Ey — vempr) = T (2.36)
E
Ef) = Ve (ma — Vern0) = % (2.37)

We derive (2.33).

2.4.1 Elastic collision
We have p; 4 p2 = p3 + ps, where
2

mj =mi, pi = mj (2.38)

We define the Lorentz invariant quantities

s = (p1+p2) = (p3 +pa)’ (2.39)
t=(p1—ps)° = (p2—pa)? (2.40)
u=(p1 —p1)* = (p2 — p3)° (2.41)
— s+t+u=2mi+2mj (2.42)
In the CM frame, we have, with £} = EJ,
t=—(p) —p)* = —2p7(1 — cos®) (2.43)

This shows that ¢ is related to scattering angle, and in the LAB frame, we
have

t = (ps = pa)® = 2ma(my — Ey) = —2myT, (2.44)

where Ty = E4 — msy the recoil kinetic energy.
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2.4.2 Inelastic collision
We have p; + ps = p3 + ps + .... In the LAB frame we have

P = (E1, D), ph = (m2,0) (2.45)
s = (p1+p2)’ = mi +ma+ 2me By (2.46)

In the CM frame, we also have

s=+pi+..) > m+3F+m+42+.), E = /ml+p? (247)
Et,h’r‘ = \/Spin = M3+ My + ... = M (248)

1
= Eypr = Q_mQ[M2 —mi —mj]  (2.49)

1
Tlthr = El,thr —my = %[MZ — (m1 + m2)2] (25())
2

For example of the inelastic scattering 7+ +p — 7+t +p+ 7" + 7, we have
M (p) = 940MeV, M (m) = 140M eV, so that

T = 363.4MeV

Exercise 2.4 Evaluate T above explicitly.

2.5 Cross section
The differential cross section is defined to be

scattering rate Wy, into solid angle df2
Incident flux F
do . Wf,‘
aQ  F

do = (2.51)

(2.52)



