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Friday 2, April 2021

2 Relativistic Kinematics II

2.1 Reviews of the last lecture

Working in the unit in which c = 1 = h̄.
We have derived the 4-momentum pµ = (E, ~p), such that

p2 = m2, E = γm, ~p = γm~v

when γ = (1− β2)−1/2, β = v/c, so that

~β =
~p

E
, γ =

E

m

Energy-momentum conservation means (p1+p2+ ...)µ = constant, i.e., before
and after.
LT (in z-direction) of 4-momentum is

E ′ = γ(E − βpz), p′z = γ(pz − βE), p′⊥ = p⊥

E = γ(E ′ + βp′z), pz = γ(pz + βE ′), p⊥ = p′⊥

In particle physics CM-frame moves relative to the rest LAB-frame, relative
to an observer.

Figure 2.1:

2.2 Three-body decays

Let us determine a decay of a heavy particle of mass M into three particles
of masses m1,m2,m3, see figure (2.1) above. The conservation of energy-
momentum is

P µ = (p1 + p2 + p3)
µ (2.1)
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Let us define the following Lorentz invariant quantities:

s = P 2 = M2 (2.2)

s1 = (P − p1)2 = (p2 + p3)
2 (2.3)

s2 = (P − p2)2 = (p1 + p3)
2 (2.4)

s3 = (P − p3)2 = (p1 + p2)
2 (2.5)

Their meanings are
√
s is the invariant mass of the mother particle,

√
s1 is

the invariant mass of a system of particles 2+3,
√
s2 is the invariant mass of

a system of particles 1+3, and
√
s3 is invariant mass of a system of particles

1+2. The three invariants s1, s2, s3 are not independent, we can observe from
(2.2-2.5) that

s1 + s2 + s3 = M2 +m2
1 +m2

2 +m2
3 (2.6)

Exercise 2.1: Derive this expression explicitly.
In the rest frame of mother particle, we will have

s1 = M2 +m2
1 − 2ME1 (2.7)

with E1 =
√
p21 +m2

1. Since E1 ≥ m1, thus we can observe from (2.7) that

s1,max = (M −m1)
2 (2.8)

To find s1,min, we have to evaluate s1 in the rest frame of subsystem (2,3),
the Jackson frame 1, which is denote as

s1 = (p2 + p3)
2 = (Eo

2 + Eo
3)2 ≥ (m2 +m3)

2 = s1,min (2.9)

We can similar formula for s2, s3. In summary we have the ranges of
possible s1, s2, s3 from the decay as

s1 ∈ [(m2 +m3)
2, (M −m1)

2] (2.10)

s2 ∈ [(m1 +m3)
2, (M −m2)

2] (2.11)

s3 ∈ [(m1 +m2)
2, (M −m3)

2] (2.12)

In the Jackson frame of a subsystem (2,3), we also observe from energy-

momentum conservation that ~po1 = ~P o, thus we have

s1 = (Eo − Eo
1)2 =

(√
M2 + P o2 −

√
m2

1 + po21

)2

(2.13)

1In this frame we denote pµ2 = (Eo
2 , ~p

o
2) and pµ3 = (Eo

3 , ~p
o
3), in which ~po3 = −~po2.
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Solving for po21 , we have

po21 =
1

4s1
[s1 − (M −m1)

2][s1 + (M +m1)
2] =

1

4s1
λ(s1,M

2,m2
1) (2.14)

where

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (2.15)

is known as Stueckelberg kinematics function. The corresponding expressions
for po22 , p

o2
3 are

po22 = po23 =
1

4s1
λ(s1,m

2
2,m

2
3) (2.16)

Exercise 2.2: Derive details expressions of po22 and po23 .
Next let us determine the invariant s2, in the Jackson frame of subsystem

(2,3) we observe that

s2 = (p1 + p3)
2 = m2

1 +m2
3 + 2(Eo

1E
o
3 − po1po3 cosα) (2.17)

If s1 is fixed, we can see that s2 depends only on α and shows up its maximum
s2+ = s2,max and minimum s2− = s2,min values as

s2± = m2
1 +m2

3 + 2(Eo
1E

o
3 ± po1po3) (2.18)

Rewrite Eo
1 , E

o
3 in terms of s1, as

Eo
1 =

1

2
√
s1

(s− s1 −m2
1), E

o
2 =

1

2
√
s1

(s1 −m2
2 +m2

3) (2.19)

Then we have from (2.18)

s2± = m2
1 +m2

3 +
1

2s1

[
(s− s1 +m2

1)(s1 −m2
2 +m2

3)

±λ1/2(s, s1,m2
1)λ

1/2(s1,m
2
2,m

2
3)
]

(2.20)

The curve defined by (2.20) is defined the boundary of the Dalitz plot on
the (s1, s2) plane, see figure (2.1). See an example of Dalitz plot of D+ →
K−D+D+ decay, at https://arxiv.org/pdf/1902.05884.pdf.

Exercise 2.3: Determine the Dalitz plot of K+ → π0µ+νµ decay.
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Figure 2.2:

2.3 Decay rate

-TBA-

2.4 Two-particle collisions

Let us determine two-to-two particle collision a+ b→ c+ d, see figure (2.3).

Figure 2.3:

The energy-momentum conservation reads

(p1 + p2)
µ = (p3 + p4)

µ (2.21)
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In the LAB frame, we have

pµ1 = (E1, 0, 0, p1), p
µ
2 = (m2, 0, 0, 0)

pµ3 = (E3, 0, p3 sin θ, p3 cos θ), pµ4 = (E4, 0,−p4 sin θr, p4 cos θr)

In the MC frame we have

p′
µ
1 = (E ′1, 0, 0, p

′
1), p

′µ
2 = (E ′2, 0, 0,−p′2), p′2 = p′1 (2.22)

p′
µ
3 = (E ′3, 0, p

′
3 sin θ′, p′3 cos θ′), p′

µ
4 = (E ′4, 0,−p′4 sin θ′,−p′4 cos θ′) (2.23)

with θ′r = π − θ′ and p′4 = p′3. The Lorentz invariant quantity s is

s = (p′1 + p′2)
2 = (E ′1 + E ′2)

2 (2.24)

E ′1 =
√
p′21 +m2

1, E
′
2 =

√
p′21 +m2

2 (2.25)

→ p′1 =
1

2
√
s

√
[s− (m1 −m2)2][s− (m1 +m2)2] (2.26)

From energy-momentum conservation, we also have

s = (p′3 + p′4)
2 = (E ′3 + E ′4)

2 (2.27)

E ′3 =
√
p′23 +m2

3, E
′
4 =

√
p′23 +m2

4 (2.28)

p′3 =
1

2
√
s

√
[s− (m3 −m4)2][s− (m3 +m4)2] (2.29)

Back to the LAB frame, we have

s = (p1 + p2)
2 = m2

1 +m2
2 = 2m2E1 (2.30)

→ E1 =
s−m2

1 −m2
2

2m2

≡
√
p21 +m2

1 (2.31)

→ p1 =
1

2m2

√
[s− (m1 −m2)2][s− (m1 +m2)2]

=
1

2m2

λ1/2(s,m2
1,m

2
2) (2.32)

From (2.26) and (2.32), we observe that

p′1 = p1
m2√
s
→ E ′1,2 =

m2
1,2 +m2E1√

s
(2.33)
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To derive the LT parameters, let us determine the total 4-momentum
pµ = (p1 + p2)

µ, its LT in z-direction is

E1 +m2 = γcm((E ′1 + E ′2︸ ︷︷ ︸
√
s

) + vcm(p′1 + p′2︸ ︷︷ ︸
=0

)) = γcm
√
s (2.34)

γcm =
E1 +m2√

s
, and vcm =

p1
E1 +m2

(2.35)

Let us test by calculating the LT of E1,2 → E ′1,2, we have

E ′1 = γcm(E1 − vcmp1) =
m2

1 +m2E1√
s

(2.36)

E ′2 = γcm(m2 − vcm0) =
m2(m2 + E1)√

s
(2.37)

We derive (2.33).

2.4.1 Elastic collision

We have p1 + p2 = p3 + p4, where

m2
3 = m2

1, p
2
4 = m2

2 (2.38)

We define the Lorentz invariant quantities

s = (p1 + p2) = (p3 + p4)
2 (2.39)

t = (p1 − p3)2 = (p2 − p4)2 (2.40)

u = (p1 − p4)2 = (p2 − p3)2 (2.41)

→ s+ t+ u = 2m2
1 + 2m2

2 (2.42)

In the CM frame, we have, with E ′1 = E ′2,

t = −(~p′1 − ~p′3)2 = −2p′21 (1− cos θ′) (2.43)

This shows that t is related to scattering angle, and in the LAB frame, we
have

t = (p2 − p4)2 = 2m2(m2 − E4) = −2m2T4 (2.44)

where T4 = E4 −m2 the recoil kinetic energy.
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2.4.2 Inelastic collision

We have p1 + p2 = p3 + p4 + .... In the LAB frame we have

pµ1 = (E1, ~p), p
µ
2 = (m2, 0) (2.45)

s = (p1 + p2)
2 = m2

1 +m2 + 2m2E1 (2.46)

In the CM frame, we also have

s = (p′3 + p′4 + ...)2 ≥ (m+ 32 +m+ 42 + ...), E ′i =
√
m2
i + p′2i (2.47)

E ′thr =
√
smin = m3 +m4 + ... ≡M (2.48)

→ E1,thr =
1

2m2

[M2 −m2
1 −m2

2] (2.49)

T thr1 = E1,thr −m1 =
1

2m2

[M2 − (m1 +m2)
2] (2.50)

For example of the inelastic scattering π+ + p→ π+ + p+ π+ + π−, we have
M(p) = 940MeV,M(π) = 140MeV , so that

T thrπ = 363.4MeV

Exercise 2.4 Evaluate T thπ above explicitly.

2.5 Cross section

The differential cross section is defined to be

dσ =
scattering rate Wfi into solid angle dΩ

Incident flux F
(2.51)

dσ

dΩ
=
Wfi

F
(2.52)
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