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U. Robkob
Lecture 3. Friday 9, April 2021

Reviews from the last lecture

We have determined the relativistic kinematics of three-body decays. The
decay kinematics is written in therms of Lorentz covariant variables s’s, and
we have defined Jackson frame, the CM-frame of two particles used for the
third party. The decay products are predicted by Dalitz plot.

The two particle collision kinematics is also written in terms of the
Lorentz covariant Mandelstam variables (s,t,u). These variables are first
calculated in the CM frame, and then LT to the LAB frame for making the
prediction of the collision outcome.

I have left to talk about the decay rate and collision cross section.

Decay rate

From the NRQM, the transition rate is evaluated from the Fermi’s golden
rule (h =1)

Ty = 2n|My|p(Ey) (0.1)
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For N-particle decay, with energy-momentum conservation p} = Zle oh,
we have
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where we have used relativistic normalization (4|1) = 2E,. From above

we will have relativistic expression of decay rate
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where dLIPS = Lorentz Invariant Phase Space measure. For example of

two-particle decay, a — 1 4 2, we will have
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In the CM-frame, E, = m,, p, = 0, we will have from above
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Finally we have
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Note that the amplitude |M;|* depends on fundamental interactions (EM,strong,
weak) and is always written in terms of Lorentz invariant variable s’'s and
appear in particle data web page (www.pdg.org).

From multi-channels decays, we have

1
r= r; == 1
Z i T=T (0.18)
J
is the mean life time of the decay.

Cross section

The cross section is defined as
scattering rate ~ Wy;
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In unit of m™2, and the defined unit is 1 barn = 10724 cm™2. In case of
2-t0-2 particle collision, a + b — 1 + 2, we will have
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In the CM-frame p, = —pp = p}, /s = E} + E}, so that
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So that the Lorentz invariant cross section, using Lorentz invariant Fermi’s
golden rule we have derived above, will be
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Using previous analysis, we have
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The differential cross section determined in the CM-frame. Note that p* can
be written in terms of Lorentz invariant variables, and for elastic collision
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3 Particle Accelerators and Detectors

3.1 Particle accelerators

Particle accelerators work from the action of Lorentz force on the charged
particle

F =qE + q(7 x B) (3.1)

Particle get accelerated by the electric field and changed direction, without
acceleration, by magnetic field. At high energy, the acceleration of a particle
is reduced by relativistic factor as !

ol

F =mi+m~y*(3-@)f, where f=—, v=(1—%)"1/2 (3.2)

The energy consumption rate of a particle from the electric field is

dP = F - dv (3.3)

2 mc?

while the particle velocity is related to its energy as E' = ymc® = \/17—7

On the other hand, accelerated charged particle emit radiations with the
loosing rate of 2

(v"ajj +al) (3.4)

This shows that linear acceleration lose more energy than circular accelera-
tion.
List of accelerators from the past:

e Van-de Graaff (1930) - static

Walton-Cockroft (1932) - static

Linacs - linear RF synchronous

Cyclotron - circular RF synchronous
e Synchrotron - circular synchronous
e Collider - circular synchronous

See the list of all accelerators at hitps://en.wikipedia.org/wiki/List of accel-
erators in particle physics.

!See J.G. Pereira, arXiv: 1806.08680[physics.class-ph]
2See: http://astro.osu.edu/ ryden/ast822/week7.pdf



3.2 Particle detectors

Particle detectors work on the basis of particle interaction with matter, i.e.,
cross section and energy lose rate. There will be photon, charged particle
and neutral particle.

3.3 Photon interaction with matter

Penetration depth is defined as
I(z) = Ipe ™ *, u — linear attenuation coef.
I(z) = Ipe~ WPt K mass attenuation coef

p
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1
tig = I(ti)2) = 510 — half — value thickness
The energy lose processes of a photon are photoelectric effect, Compton

scattering, pair production.

3.4 Charged particle interaction with matter

The interaction is characterize by energy lose rate —dE/dx. For Coulomb
interaction between a particle of charge ze with target particle of charge Ze,
we will have
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Full RQM derivation appear in form of Bethe-Bloch Formula.
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See figure (3.1) for muon stopping power.
List of particle detectors see hitps://en.wikipedia.org/wiki/Particle de-

tector
Modern particle detectors (CMS for example)
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Figure 3.2:

4 Particle Classification

Observed elementary particles are classified by their interactions, as appear
in figure (4.1). Normally, nuclear particles are identified with |M,s, I, I5 >,
where [ is isospin, and I3 is its third component.

Some additional quantum numbers are assigned as

e Lepton quantum numbers L, see figure (4.2)
e Baryon quantum number B, see figure (4.3)

These numbers are conserved under particle processes., see figure (4.4)
Ezercise 4.1 From figure (4.5), show that the following particle processes
are possible or not, using quantum number conservation.
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Figure 4.1:

For baryons, its charge @ is derived from Gell-Mann-Nishijima formula

as

Q:Ig-l—%B (4.1)

For example of p — I3 =1/2,n — I3 = —1/2, so that Q, = +1,Q, = 0.
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