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Lecture 4 - DIS, Partons and Quark Models of Hadrons

Reviews of the last lecture

We have classified all observed particles, according to their interactions and
(decay) life-time, into hardrons and leptons. All leptons are fermions, while
bosonic hardrons are called meson and fermionic hardrons are called baryons.
We have assigned the quantum number to these particles, i.e., lepton number
L and baryon number B, these must be conserved under particle processes
according to their elementary properties.

Thing becomes more puzzle when more particles are observed, and some
of them behave curios or strange, i.e., all are unstable, produced in pair,
produced from strong force interaction and decay via weak force. Fro ex-
ample

π− + p+ → K0 + Λ0

K0 → π+ + π−

The appearance of strange particles show that proton, neutron and pion
may not be elementary.

1 DIS project

In order to probe the inner structure of proton, SLAC-MIT initiate the DIS
(deep inelastic scattering) project in 1968 by firing energetic electron, up to
an energy of 20 Gev, on a proton target. The result was reported in the
same year by Panovsky as

”the apparent success of the parametrization of the cross-section in the
variable x−Q2 in at least indicative that point-like interactions are becoming
involved.”

1.1 e−p+-DIS

The SLAC-MIT DIS experiment, see Figure 1 below.
Diagram of e−p+ → e− + X DIS, where X is anything, is illustrated as in
the following Figure 2.
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Figure 1: SLAC-MIT DIS Project.

Figure 2: ep→ eX DIS diagram.

1.2 DIS kinetamics

Let us denote

kµ = (Ee,~k), k′µ = (E′e,
~k′), qµ = (k − k′)µ (1)

→ Q2 = −q2 = −(k2 + k′2 − 2k · k′) = −2m2
e + 2EeE

′
e − 2~k · ~k′

' 2EeE
′
E(1− cos θe), Ee � m2

e, Ee ' |~k| (2)

y =
p · q
p · k

= 1− Ee
E′e

(
1− cos2

θe
2

)
(3)

x =
Q2

2p · q
=
Q2

sy
(4)

where x is called Bjorken variable, a fraction of proton momentum transfer
to X and y is inelasticity factor.
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Different beam energies provide access to different ranges in Q2 and x,
via the (approximate) relation Q2 = sxy, see Figure 3 below.

Figure 3: Q2 − x plot.

1.3 DIS cross section

Rutherford, low energy, elastic Coulomb scattering cross section(
dσ

dΩ

)
Rutherford

=
α2

4E2 sin4(θ/2)
(5)

Energetic Coulomb scattering, Mott, cross section(
dσ

dΩ

)
Mott

=

(
dσ

dΩ

)
Rutherford

cos2
θ

2
, me �M (6)

Dirac (QFT) inelastic Coulomb scattering cross section(
dσ

dΩ

)
Dirac

=

(
dσ

dΩ

)
Mott

(
E

E′

)(
1− q2

2M2
tan2 θ/2

)
(7)
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See Figure 4.

Figure 4: Dirac elastic Coulomb scattering cross section.

DIS cross section, see Figures 5 and 6 below.

Figure 5: DIS cross section.

Scattering cross section from composite particle target(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
point−like

|F (q2)|2 (8)

where |F (q2)|2 is the form factor, for example of nuclei form factor see Figure
7 below.
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Figure 6: DIS resonance cross section.

,

Figure 7: Nuclear form factor and elastic electron scattering cross section.

2 Partons

The parton model was proposed by Richard Feynman in 1969 as a way to
analyze high-energy ep DIS experiment of hadron. Any hadron (for example,
a proton) can be considered as a composition of a number of point-like
constituents, termed ”partons”.

2.1 Parton distribution function of PDF

A parton distribution function (PDF) within so called collinear factorization
is defined as the probability density for finding a particle with a certain
longitudinal momentum fraction x at resolution scale Q2.
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The DIS cross section is derived (from QCD) in the form(
dσ

dE′dΩ

)
DIS

=

(
dσ

dΩ

)
Mott

{
W2(Q

2, x) + 2W1(Q
2, x) tan2 θ/2

}
(9)

F1(Q
2, x) = mPW1(Q

2, x), F2(Q
2, x) = νW2(Q

2, x), ν =
p · q
mp

(10)

where ν is the exchanged boson energy in the proton rest frame. See Figure
6 below.

Figure 8: Parton distribution function.

Parton scattering cross section, see Figure 9 below.

Figure 9: Parton scattering cross section.

6



3 Quark models of hardrons

George Zweig (1964), and Murry Gell-Mann (1964), independently proposed
quark models of hadrons, using symmetry principle in quantum mechanics.

3.1 Symmetry principle in QM

Let O be symmetry operation, it means that

O|ψ >= |ψ′ >, O†O = OO† = 1 (11)

H|ψ >= E|ψ >→ OHO†O|ψ >= O(E|ψ >) = E(O|ψ >) (12)

OHO† = H, or OH = HO → H|ψ′ >= E|ψ′ > (13)

We can understand that O is a symmetry transformation iff [O,H] = 0 ,
and O is unitary operator

O = eiαt, t† = t− hermitian generator (14)

and α is a real transformation parameter.

3.1.1 Spcetime symmetry

Let us determine
a) Spatial translation
Let us consider

|x >→ |x+ a >= |x > +adx|x > +... = |x > +iapx|x > +... (15)

→ |x+ a >= (1 + iapx + ..)|x >= e+iapx |x > (16)

Note that px = −idx, the momentum operator, is a generator of spatial
translation. (h̄ = 1), i.e., H = p2/2m, [p,H] = 0, the system is translation
invariant.

b) Time evolution
Let us consider

|ψ(t+ s) >= |ψ(t) > +sdt|ψ(t) > +... |ψ(t) > −isH|ψ(t) > +.. (17)

→ |ψ(t+ s) >= (1− isH + ..)|ψ(t) >= e−isH |ψ(t) > (18)

Note that H = idt, the Hamiltonian operator, is a generator of time evo-
lution, i.e., a system with H 6= H(t), time-independent Hamiltonian, is
stationary system, time-evolution invariant.

c) Spatial rotation
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Let us consider(
x
y

)
→
(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
'
(

1 θ
−θ 1

)(
x
y

)
(19)

So that

|x, y >→ |x+ θy, y − θx >= |x, y > +θxdy|x, y > −θydx|x, y > +...

= (1 + iθ(−ixdy + iydx) + ...)|x, y >
= (1 + iθLz + ..)|x, y >= eiθLz |x, y > (20)

Note that Lz, the z-component angular momentum, is a generator of rotation
on xy-plane. Let us denote

Ri(θi) = eiθiLi , i = 1, 2, 3 = (x, y, z) (21)

→ [Li, Lj ] = iεijkLk (22)

It is the angular momentum (Lie type) algebra. A rotational symmetry is
called SO(3) symmetry.

3.1.2 Internal symmetry

Let us determine the isopin doublet

|N >=

(
p
n

)
, with mp ' mn = 930MeV/c2 (23)

This state has degenerate mass, and it is invariant under unitary transfor-
mation

|N >→ |N ′ >= eiα|N > (24)

a U(1) symmetry of constant phase change. And

|N >→ |N ′ >= eiα
ata |N >, a = 1, 2, 3, ta =

σa

2
(25)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(26)

{σa, σb} = 2δab, [σa, σb] =
i

2
εabcσc (27)

Note that g = eiα
ata is just a symmetry operator of rotation on isopsin space,

{ta} is a set of hermitian generators of the transformation. This symmetry
is called SU(2) global unitary symmetry.
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3.2 Unitary groups and algebras

In general, the SU(N) symmetry is generate by a generator in the form

g = eiα
ata , a = 1, 2, ..., N2 − 1 (28)

where ta is NxN matrix, satisfy an algebra

[ta, tb] = ifabctc, T r[ta] = 0 (29)

where fabc is called structure constant, and ta will transform N-plete inside
its degenerate group of states. A set of {ta}, together with identity 1N ,
form a group called SU(N) group. The eigen-basis used for all representa-
tions is determined from the Casimir operator, constructed from the group
generators as

Ci =
∑
a

(ta)2, i = 1, 2, .., N − 1, Ci3 = ta
′ − diagonal (30)

Ci|λi,mi >= λi(λi + 1)|λi,mi >, Ci3|λi,mi >= mi|λi,mi > (31)

Similar to the case of SO(3) group, i.e., L2 = L2
x + L2

y + L2
z, L

2|l,m >=
l(l + 1)|l,m >.

Note that the Casimir has eigen-set similar to the angular momentum.
Other importance quantity used to characterize the group algebra is its
weight, determined from diagonal matrices generator. The weight diagram
can be construct. The ladder operators, raising/lowering, can be constructed
from the other with off-diagonal elements, used to determined changes of the
weight points.

Let us determine some examples of SU(N) group.
a) SU(2) group, for isospin symmetry, its set of generators is

ta =
σa

2
, a = 1, 2, 3, I3 → t3 =

(
1/2 0
0 −1/2

)
(32)

I± = (t1 ± it2)→ I+|1/2,−1/2 >= |1/2, 1/2 > (33)

I−|1/2, 1/2 >= |1/2,−1/2 > (34)

All of these are represented by weight diagram as appear in Figure (10).
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Figure 10:

b) SU(3) group, for color symmetry, its set of generators is

ta =
λa

2
, a = 1, 2, ..., 8 (35)

where {λa} is a set of Gell-Mann matrices, see Figure 11 below.

Figure 11:

The invariant color multiplet for this group is

|color quark〉 =

 R
G
B

 (36)

From (35), we can assign the weights and ladders as

I3 = t3, Y =
2√
3
t8 → (I3, Y )− plane with three coordinates (37)(

1

2
,
1

3

)
,

(
−1

2
,
1

3

)
,

(
0,−2

3

)
(38)

A sets of three ladder operators are defined as

I± = (t1 ± it2), V± = t4 + it5, U± = (t6 ± it7) (39)

See its weight diagram in Figure (12) below.
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Figure 12:

3.3 Quark models of hadrons

Quark model of hadrons: mesons are quark-anti quark bound states, while
baryons are three quarks bound states. Three quark state state is forbidden
from Pauli’s exclusion principle, except having additional quantum number.
Color quantum numbers (R,G,B) is clever introduced with color rules:

”only colorless (white) hadrons can exist in nature”
Quark colors and anti-colors are appear in Figure (14) below.

Figure 13:

Chronological list of observations:

• 1969, u, d and s quarks were observed at SLAC

• 1974, c quark was observed through J/Ψ meson at SLAC

• 1977, b quark was observed through Y-meson at Fermilab

• 1995, t quark was observed at Fermilab
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List of the observed quarks appear in Figure 14 below.

Figure 14:

3.3.1 SU(2) quark models

The model consist of u, d quarks (also with ū, d̄ anti-quarks) We assign
(u, d) with su(2) fundamental representation, and (ū, d̄) with su(2) adjoint
representation as appear in Figure (15) below.

Figure 15:

a)Mesons, mesons are quark-antiquark state, i.e., qq̄ = su(2) ⊗ su(2).
The construction of this state appear in Figure (16) below.

This matches with a group of pions (π0, π±), with degenerate mass of
140 MeV/c2, as

π− = dū, π0 = dd̄+ uū, π+ = ud̄ (40)

b) Hadrons, hadrons are three quark state, i.e., qqq = su(2)⊗ su(2)⊗
su(2), as appear in Figure (17).

We observe that proton and neutron match with this model as

p(I3 = +1/2) = {uud}, n(I3 = −1/2) = {udd}
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Figure 16:

Figure 17:

with charge Q = I3 + 1
2B, i.e., Q(p) = +1, Q(n) = 0.
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3.4 su(3) quark models

Quark content of in this model are (u, d, s), their represented by su(3) alge-
bra as

Figure 18:

a) Mesons, are constructed as

su(3)⊗ su(3) = 9 = 8⊕ 1

Figure 19:

b) Baryons, are constructed as

su(3)⊗ su(3)⊗ su(3) = 27 = 10⊕ 8⊕ 8⊕ 1

List of mesons and baryons, see Figure (21).
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Figure 20:
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Figure 21:
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