
7 Interaction Perturbation and Diagrammatic

7.1 Interacting Hamiltonian

Interacting Hamiltonian

H = H0 + V, H0 =

∫
d3xψ†(x)

p2

2m
ψ(x) (7.1)

V =
1

2

∫
d3x

∫
d3x′ψ†(x)ψ†(x′)V (x− x′)ψ(x′)ψ(x) (7.2)

7.2 Interacting Green’s function

Define as

iG(x, x′; t) =
〈Ω|T [ψ(x, t)ψ†(x, 0)]|Ω〉

〈Ω|Ω〉
(7.3)

where |Ω〉 is interacting ground state and 〈Ω|Ω〉 6= 1. Since ψ(x, t) =
ψH(x, t), rewrite in term of interacting operator as

ψH(x, t) = U †I (t, 0)ψI(x, t)UI(t, 0)

From above we will have

iG(x, x′; t) =
〈Ω|T [U †I (t, 0)ψI(x, t)UI(t, 0)ψ†I(x, 0)]|Ω〉

〈Ω|Ω〉
(7.4)

7.3 Gell-Mann and Low theorem

The theorem state that the interaction is adiabtaically turned on from the
far past and turned off in the far future. It has a full strength of interaction
at the present. The system Hamiltonian can be modified into the form

H = H0 + e−η|t|V, η → 0 (7.5)

We can connect the interacting ground state to the non-interacting one in
the form

|Ω〉 = lim
T→∞

UI(0,−T )|Ω0〉 (7.6)

〈Ω| = lim
T→∞

〈Ω0|U †I (0,−T ) = lim
T→∞

〈Ωo|UI(T, 0) (7.7)
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Insertion into (7.4), we have

iG(x, x′; t) = lim
T→∞

〈Ω0|T [UI(T, t)ψI(x, t)UI(t, 0)ψ†I(x
′, 0)UI(0,−T )]|Ω0〉

〈Ω0|UI(T,−T )|ω0〉

=
Ω0|T [UI(∞,−∞)ψI(x, t)ψ

†
I(x
′, 0)]|Ω0〉

〈Ω0|UI(∞,−∞)|Ω0〉
≡ N

D
(7.8)

7.4 Perturbation theory

According to the fact that

UI(∞,−∞) = T exp

{
−i
∫ ∞
−∞

dt′VI(t
′)

}
(7.9)

From (7.8) one can write

D =

∞∑
n=0

D(n) (7.10)

D(0) = 1 (7.11)

D(1) = −i
∫
dt1〈Ω0|T [VI(t1)]|Ω0〉 (7.12)

D(2) =
(−i)2

2

∫
dt1

∫
dt2〈Ω0|T [VI(t1)VI(t2)]|Ω0〉 (7.13)

... ...

D(n) =
(−i)n

n!

∫
dt1...

∫
dtn〈Ω0|T [VI(t1)...VI(tn)]|Ω0〉 (7.14)

and

N =
∞∑
n=0

N (n) (7.15)

N (0) = 〈Ω0|T [ψI(x, t)ψ
†
I(x
′, 0)]|Ω0〉 = iG(x, x′; t) (7.16)

N (1) = −i
∫
dt1〈Ω0|T [VI(t1)ψI(x, t)ψ

†
I(x
′, 0)]|Ω0〉 (7.17)

N (2) =
(−i)2

2

∫
dt1

∫
dt2〈Ω0|T [VI(t1)VI(t2)ψI(x, t)ψ

†
I(x
′, 0)]|Ω0〉

(7.18)

... ...

N (n) =
(−i)n

n!

∫
dt1...

∫
dt2〈Ω0|T [VI(t1)...VI(tn)ψI(x, t)ψ

†
I(x
′, 0)]|Ω0〉

(7.19)
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7.5 Wick’s theorem

The theorem state that product of number of operators can be written in term
of the summation of normal ordering and all possible contractions.

ABCD =: ABCD : +[AB][CD]± [AC][BD] + [AD][BC]

The normal ordering means all annihilation operators are on the right of
creation operators, so that

〈Ω0| : ABCD : |Ω0〉 = 0

The contraction means a pair of time-ordered operators

〈Ω0|[AB]|Ω0〉 = iG(A,B)

From (7.12), we observe that

D(1) =
−i
2

∫
dt1

∫
d3x1

∫
d3x′1V (x1 − x′1)

×〈Ω0|T [ψ†I(x1, t1)ψ
†
I(x
′
1, t1)ψI(x

′
1, t1)ψI(x1, t1)|Ω0〉

=
−i
2

∫
dt1

∫
d3x1

∫
d3x′1V (x1 − x′1){

iG(x1, x1; 0)iG(x′1, x
′
1; 0)− iG(x1, x

′
1; 0)iG(x′1, x1; 0)

}
(7.20)

From (7.17), we have

N (1) =
−i
2

∫
dt1

∫
d3x1

∫
d3x′1V (x1 − x′1)

×〈Ω0|T [ψ†I(x1, t1)ψ
†
I(x
′, t1)ψI(x

′
1, t1)ψ(x1, t1)ψI(x, t)ψ

†
I(x
′, 0)]|Ω0〉

=
−i
2

∫
dt1

∫
d3x1

∫
d3x′1V (x1 − x′1){

iG(x, x′; t)
[
iG(x1, x1; 0)iG(x′1, x

′
1; 0)− iG(x1, x

′
1; 0)iG(x′1, x1; 0)

]
+iG(x, x1; t− t1)iG(x′1, x

′
1; 0)iG(x1, x

′; t1)

−iG(x, x1; t− t1)iG(x1, x
′
1; 0)iG(x′1, x

′; t1)
}

(7.21)

7.6 Diagrammatic

Let us assign the diagrammatic rules

• Particle Green’s function iG(x, x′; t), see Figure (7.1a)
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• Interaction potential V (x− x′), see Figure (7.1b)

• Vertex −i2 , see Figure (7.1c)

• Integrate overall space and time points

• Insert a factor of 1/n! for the nth-order diagram

Figure 7.1:

Note that the time direction is from left to right. From (7.20,21), see Figure
(7.2)

Figure 7.2:

7.7 Linked cluster theorem

In general the D-term contain all disconnected diagrams, while the N-term
can be factorized to be the product of connected and disconnected diagrams.
This results to have only connected diagram from the N-term for the Green’s
function. This is called linked cluster theorem, see Figure (7.3)
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Figure 7.3:

Note that bare Green’s function (zero-order) diagram has no interaction
line, first-order diagrams have one interaction line, second-order diagrams
have two interaction lines, and so on.

7.8 Diagram on momentum space

Apply with the Fourier transformation

iG(x, x′; t) =

∫
d3k

(2π)3

∫
dω

2π
eik·(x−x

′)−iωtiG(k, ω) (7.22)

iG(k, ω) =

∫
d3x

∫
dte−ik·(x−x

′)+iωtiG(x, x′; t) (7.23)

V (x− x′) =

∫
d3q

(2π)3
eiq·(x−x

′)V (q) (7.24)

V (q) =

∫
d3xe−iq·(x−x

′)V (x− x′) (7.25)

We already know an expression of the Green’s function

iG(k, ω) =
1

ω − ξk ± iη
, ξk = εk − µ (7.26)
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and µ = EF . From Figure (7.4), we have

iGH(x, x′; t) =
(−i)

2

∫
dt1

∫
d3x1

∫
d3x′1V (x1 − x′1)iG(x, x1; t− t1

...× iG(x′1, x
′
1; 0)iG(x′1, x

′; t1)

=
−i
2

∫
d3q

(2π)3

∫
d3k

(2π)3

∫
dω

2π

∫
d3k′′

(2π)3

∫
dω′′

2π

...× V (q)iG(k, ω)iG(0, 0)iG(k′′, ω′′)

...×
∫
dt1

∫
d3x1

∫
d3x′1e

ik·x−ik′′·x′+i(q−k+k′′)·x1−iq·x′1−iωt−i(ω′′−ω)t1 (7.27)

Space and time integration results with

2πδ(ω′′ − ω)(2π)3δ(q)(2π)3δ(q − k + k′′)

Then we have

iGH(x, x′; t) =

∫
d3k

(2π)3

∫
dω

2π
eik·(x−x

′)−iωt

×−i
2
V (0)iG(k, ω)iG(0, 0)iG(k, ω) (7.28)

→ iGH(k, ω) =
−i
2
V (0)iG(k, ω)iG(0, 0)iG(k, ω) (7.29)

See the diagram in Figure (7.4a).

Figure 7.4:

A similar expression for the Fock term, see Figure (7.4b), will be

iGF (k, ω) =
i

2

∫
d3k′

(2π)3
V (k − k′)iG(k, ω)iG(k − k′, ω)iG(k, ω) (7.30)

Diagrammatic rules on momentum space:
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• Particle Green’s function iG(k, ω), see Figure (7.5a)

• Interaction potential V (q), see Figure (7.5b)

• At each interaction vertex apply with a factor Γ =
√
−i
2 , see Figure

(7.5c)

• Apply conservation of energy-momentum (ω, k) at each vertex

• Apply loop momentum integration
∫

d3k
(2π)3

, also apply the loop energy

integration
∫
dω
2π for the time-dependent interaction

Figure 7.5:

7.9 Dyson’s equation

From above, we can observe that the interacting Green’s function can be
written in the form

iG = iG0 + iG0(...)iG0 (7.31)

Let us define Σ(k, ω) = ΣH(k, ω) + ΣF (k, ω) as the particle self-energy, the
Green’s function can be expressed in the form

iG = iG0 + iG0ΣiG0 + iG0ΣiG0ΣiG0 + ...

= iG0 + iG0Σ(iG0 + iG0ΣiG0 + iG0ΣiG0ΣiG0 + ...) (7.32)

= iG0 + iG0ΣiG (7.33)

This is called Dyson’s equation, it can be solved in the form

(1− iG0Σ)iG = iG0((iG0)
−1 − Σ)iG0 = iG0

(iG)−1 = (iG0)
−1 − Σ→ iG(k, ω) =

1

ω − ξk − Σ(k, ω)
(7.34)

7



This show that particle self energy make a shift in particle spectrum, i.e.,
ξk → ξk + Σ(k, ω). The particle self-energy will be determined from a par-
ticular kind of particle interaction, anyway its generic diagrammatic repre-
sentation appear in Figure (7.6).

Figure 7.6:

Note that these relations are self-consistent. Note also the we have defined
bar and dressed quantities.

7.10 Random phase approximation: RPA

At the first order correction for both for Green’s function and self energy,
contain Hartree term (balloon diagram) and Fock term (oyster diagram). At
the second order we have RPA approximation, it contain the bubble grams,
see Figure (7.7), and it is written as

ΣRPA =
∞∑
n=1

Σ
(n)
RPA (7.35)

In the RPA diagrams, they contain bar Green’s function, bar vertex, and
bar interaction.

Let us define medium polarization Π(q), see Figure (7.8). One can write
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Figure 7.7:

dresses interaction potential in the form

Ṽ (q) = V (q) + v(q)Π(q)V (q) + V (q)Π(q)V (q)Π(q)V (q) + ...

= V (q) + V (q)Π(q)Ṽ (q) (7.36)

Ṽ (q)− V (q)Π(q)Ṽ (q) = V (q)→ Ṽ (q) =
V (q)

1− V (q)Π(q)
≡ V (q)

ε(q)
(7.37)

We have defined dielectric function

Figure 7.8:

ε(q) = 1− V (q)Π(q) (7.38)

In case of Coulomb interaction, Ṽ (q) will be screened Coulomb interaction.

9


