
SCPY475-TCMP/ Lecture 2

2 Theoretical Methods

2.1 Quantum oscillators

Classical harmonic oscillation is a system of simple oscillation, its Hamilto-
nian is

H =
p2

2m
+

1

2
mω2x2, ω2 =

k

m
(1)

Its quantization is

x→ x̂ = x, p→ p̂ = −ih̄ d
dx
, [x̂, p̂] = ih̄ (2)

H → Ĥ =
p̂2

2m
+

1

2
mω2x̂2, Ĥ|ψE〉 = E|ψE〉 (3)

2.1.1 Bose oscillator

Let us define

x̂ =

√
h̄

2mω
(â† + â), p̂ = i

√
mh̄ω

2
(â† − â) (4)

â =

√
mω

2h̄
(x̂+

i

mω
p̂), â† =

√
mω

2h̄
(x̂− i

mω
p̂) (5)

[â, â] = 0 = [â†, â†], [â, â†] = 1 (6)

Ĥ =
h̄ω

2
(ââ† + â†â) = h̄ω(â†â+

1

2
) (7)

We just looking for

N̂ = â†â
?−→ N̂ |n〉 = n|n〉 (8)

Ĥ = h̄ω(N̂ +
1

2
), [Ĥ, N̂ ] = 0

?−→ Ĥ|n〉 = En|n〉 (9)

Let us determine (hide all hat over operator)

[N, a] = a†aa− aa†a = (a†a− aa†)a = −a (10)[
N, a†

]
= a†aa† − a†a†a = a†(aa† − a†a) = a† (11)
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Then determine

N(a|n〉) = (Na)|n〉 = (aN − a)|n〉 = (n− 1)(a|n〉) (12)

→ a|n〉 = cn|n− 1〉 =
√
n|n− 1〉 (13)

Since 〈n|a†a|n〉 = n〈n|n〉 = |cn|2〈n− 1|n− 1〉 → cn =
√
n (14)

N(a†|n〉) = (Na†)|n〉 = (a† + a†N)|n〉 = (n+ 1)(a†|n〉) (15)

→ a†|n〉 = cn+1|n+ 1〉 =
√
n+ 1|n+ 1〉 (16)

Since 〈n|aa†|n〉 = 〈n|(1 +N)|n〉 = (n+ 1)〈n|n〉 = |cn+1|2〈n+ 1|n+ 1〉
→ cn+1 =

√
n+ 1 (17)

Note that a lower n steps by one and a† increase n steps by one, so that n
can be integer start from zero, i.e., n = 0, 1, 2, 3, .... From (9), we get

En = h̄ω(n+ 1/2), n = 0, 1, 2, ... (18)

2.1.2 Fermi oscillator

Instead of (7), we rewrite the Hamiltonian in the form

HF = h̄ωF (NF −
1

2
), NF = c†c, (19)

{c, c†} = 1, {c, c} = 0 = {c†, c†} → c2 = 0 = (c†)2 (20)
?−→ NF |nF 〉 = nF |nF 〉 (21)

Let us determine

{NF , c} = NF c+ cNF = c†cc+ cc†c = (c†c+ cc†)c = c (22)

{NF , c
†} = NF c

† + c†NF = c†cc† + c†c†c = c†(c†c+ cc†) = c† (23)

Then determine

NF (c|nF 〉) = (NF c)|nF 〉 = (c− cNF )|nF 〉 = (1− nF )(c|nF 〉) (24)

NF (c†|nF 〉) = (NF c
†)|nF 〉 = (c† − c†NF )|nF 〉 = (1− nF )(c†|nF 〉) (25)

We get similar action of c, c† on |nF 〉, according to the action of NF in (24,
25), let us assign

c†|0〉 = |1〉, c†|1〉 = 0→ c|1〉 = |0〉, c|0〉 = 0 (26)

So that nF = 0, 1, restricted. From (19) we get

EnF =

{
+1

2 h̄ωF , nF = 1
−1

2 h̄ωF , nF = 0
(27)

Note that Fermi oscillator has no real classical analog system.

2



2.2 Second quantization

For a generic one particle Hamiltonian, together with its Schrodinger equa-
tion

H =
p2

2m
+ V (x)→

(
− h̄2

2m
∇2 + V (x)

)
ψ(x) = Eψ(x) (28)

E =

∫
d3xψ∗(x)

(
− h̄2

2m
∇2 + V (x)

)
ψ(x) (29)

Second quantization is assigned, reinvent the hat for second quantized op-
erators, in the form

E → Ĥ, ψ(x)→ ψ̂(x) =
∑
k

âkφk(x) (30)

∫
d3xφ∗k(x)φk′(x) = δkk′ ,

(
− h̄2

2m
∇2 + V (x)

)
φk(x) = εkφk(x) (31)

From (29), we get

Ĥ =
∑
k

εka
†
kak (32)

Note that ak can be Bose or Fermi oscillator, it depends on a quantum
particle we have described.

2.2.1 Tight-binding (TB) Hamiltonian

Schrodinger equation of an electron in periodic potential is

H =
p2

2m
+ V (r), V (r +R) = V (r) (33)

Hψ(r) = Eψ(r)→ E =

∫
d3rψ∗(r)Hψ(r) (34)

where R is a lattice vector. Apply Bloch’s theorem in the form

ψ(r) =
∑
j

Cje
ik·rφj(r), φj(r +R) = φj(r) (35)

→ ψ(r +R) =
∑
j

Cje
ik·(r+R)φj(r +R)

= eik·R
∑
j

Cje
ik·rφj(r) = eik·Ru(r) (36)
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where u(r + R) = u(r) is Bloch function, while φj(r) is localized Wannier
function at the lattice site j. From (34) we will have

tij = −2

∫
d3rφ∗i (r)Hψj(r), i, j =< i, j > (37)

→ E = −
∑
i,j

tij(C
∗
jCj + C∗jCi) = −t

∑
<ij>

(C∗i Cj + C∗jCi) (38)

Second quantization Ci → ĉi, and E → Ĥ, then we have (after forget about
the hat)

H = −t
∑
<i,j>

(c†icj + c†jci), with j = i± 1 (39)

This is the TB Hamiltonian. Let us rewrite

cj =
1√
N

∑
k

eikrjck (40)

∑
i

c†ici±1 =
1

N

∑
i

∑
k,k′

e−ik·ri+ik·(ri+R)c†kck′

=
∑
k,k′

c†kck′e
ik′·R 1

N

∑
i

e−i(k−k
′)·ri

︸ ︷︷ ︸
=δkk′

=
∑
k

eik·Rc†kck (41)

From (39)

H = −t
∑
k

(
eik·Rc†kck + h.c.

)
= −t

∑
k

(
eik·R + e−ik·R

)
c†kck

=
∑
k

εkc
†
kck, εk = −2t cos(k ·R) (42)

2.2.2 Magnetic systems

Magnetic system = localized spin lattice with Heisenberg interaction

H = −J
∑
<i,j>

~Si · ~Sj (43)

where J > 0 the system is ferro magnet, while J < 0 the system is anti-
ferro magnet. (Other kinds magnetism are determined from loosely bound
electron magnetic moments, see later on Stoner theorem.)
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A single spin operator ~Si, i = x, y, z, can rewritten in second quantized
form as

Si =
1

2

∑
α,α′

c†ασ
icα′ , (44)

where α = {↑, ↓} is spin state, cα is fermionic operator satisfy the algebra

{cα, c†α′} = δαα′ , and σi is Pauli’s matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, cα =

(
c↑
c↓

)
From (44) we have

Sx =
1

2
(c†↑c↓ + c†↓c↑) (45)

Sy =
1

2
(c†↑c↓ − c

†
↓c↑) (46)

Sz =
1

2
(c†↑c↑ − c

†
↓c↓) (47)

The system of spins will be determined later.

2.3 Many-particle system

For a system N-particle with the Hamiltonian

H =
N∑
i=1

H0i +
1

2

N∑
i 6=j=1

V (ri, rj) (48)

H0i =
p2i
2m

+ U(ri) (49)

when H0i is one particle Hamiltonian, and V (ri, rj) is two particle interac-
tion potential. Its state function is written in generic form as

ψα1α2...αN (r1, r2, ..., rN ) = N
∑
P

ξPϕα1(rP1)ϕα2(rP2)...ϕαN (rPN ) (50)

with

∫
d3rϕα(r)ϕβ(r) = δαβ (51)

where N is the normalization factor, P is permutation, and ξ is statistical
factor, ξ = +1 for bosonic system and ξ = −1 for fermionic system. For
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fermionic system ψα1...αN (r1, ..., rN ) is written in term of Slater determinant.
Schrodinger equation is

Hψα1...αN (r1, ..., rN ) = Eα1...αNψα1...αN (r1, ..., rN ) (52)

In one particle approximation, we have

Eα1...αN =

N∑
i=1

εαi (53)

One particle energy is

ε =
∑
α

εα =
∑
α

∫
d3rϕ∗α(r)H0ϕα(r)

+
1

2

∑
α,β

∫
d3r

∫
d3r′ϕ∗α(r)ϕ∗β(r′)V (r, r′)

×
{
ϕβ(r′)ϕα(r)± ϕβ(r)ϕα(r′)

}
(54)

where+/− signs mean bosonic/fermionic particle, and this is the Fock (ex-
change) term. The first part (direct) is called Hartree term.

Second quantization is apply by writing

ε→ Ĥ, ϕα(r)→ ϕ̂α(r) =
∑
k

âk,αφk(r),

∫
d3rφ∗k(r)φk′(r) = δkk′ (55)

From (44), we will have∫
d3rϕ∗α(r)H0ϕα(r) =

∑
k

εka
†
k,αak,α, (56)

with εkδkk′ =

∫
d3rφ∗k(r)H0φk′(r) (57)

and with φk(r) = 1√
V
eik·r,∫

d3r

∫
d3r′ϕ∗α(r)ϕ∗β(r′)V (r − r′)ϕβ(r′)ϕα(r)

=
1

V

∑
k,k′,k′′,k′′′

∑
q

V (q)a†k′′′a
†
k′′ak′ak

× 1

V 2

∫
d3r

∫
d3r′e−i(k

′′′−k−q)·re−i(k
′′−k′+q)·r′

=
1

V

∑
k,k′,q

V (q)a†k+qa
†
k′−qak′ak (58)
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The second quantized form of (54) is, forget the Hat,

H =
∑
k,α

εk,αa
†
k,αak,α +

1

2V

∑
α,β

∑
k,k′,q

V (q)a†k+qa
†
k′−q (ak′ak ± akak′) (59)

Bosonic system

Hboson =
∑
k,α

εk,αb
†
k,αbk,α +

1

V

∑
α,β

∑
k,k′,q

V (q)b†k+qb
†
k′−qbk′bk (60)

Fermionic system

Hfermion =
∑
k,α

εk,αc
†
k,αck,α +

1

2V

∑
α,β

∑
k,k′,q

V (q)c†k+qc
†
k′−q(ck′ck − ckck′)

(61)

2.3.1 Hubbard model

For system of strong interacting electrons, they are nearly localized from
interaction. From (54) we can modified the second quantization in the form

ϕα(r) =
∑
j

cj,αφj(r),

∫
d3rφ∗j (r)φj′(r) = δjj′ (62)

Then we have∫
d3rϕα(r)H0ϕα(r) =

∑
j,j′

c†j,αcj′,α

∫
d3rφ∗j (r)H0φj′(r)︸ ︷︷ ︸
=tij , j,j′=<j,j′>

=
∑
j

tij(c
†
j,αcj−1,α + h.c.)→ ”hopping” (63)

1

2V

∫
d3r

∫
d3r′V (r, r′)|ϕα(r)2|ϕβ(r′)|2 = U

∑
j

nj,αnj,β (64)

It is the on site interaction term. So that (54) becomes

H =
∑
j,α

tij(c
†
j,αcj−1,α + h.c.) + U

∑
j,α,β

nαnβ (65)

This is known as Hubbard Hamiltonian, according to J.C. Hubbard (1963).
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2.4 Fock space

For a system of N-particle with ni particles occupied in the ith state and
ni = 0, 1, 2, ... for boson and n1 = 0, 1 for fermion. With the fact that
N =

∑
i ni, we can define number state of N-particle in the form

|N〉 = |n1〉 ⊗ |n2〉 ⊗ ... = |n1, n2, ...〉 → 〈N |N ′〉 = δNN ′ (66)

We say that |N〉 span Fock space, the generalized Hilbert space as an infi-
nite direct product of Hilbet space. This stat when acted by the annihila-
tion/creation operators

ai|n1, n2, ..., ni, ...〉 = (±)
∑i−1

j=1 nj
√
ni|n1, n2, ..., ni − 1, ...〉 (67)

a†i |n1, n2, ..., ni, ...〉 = (±)
∑i−1

j=1 nj
√
ni + 1|n1, n2, ..., ni + 1, ...〉 (68)

According to the fact that

ai|0〉 = 0, a†i |0〉 = |1i〉 → |1i〉 =
a†i
1i
|0〉 (69)

|2i〉 =
(a†i )

2

2i!
|0〉 (70)

|ni〉 =
(a†i )

n

√
ni!
|0〉 (71)

|n1, n2, ..., ni, ...〉 =
(a†1)

n

√
n1!

(a†2)
n

√
n2!

...
(a†i )

n

√
ni!

...|0, 0, ...., 0, ....〉 (72)
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