SCPY475-TCMP/ Lecture 2

2 Theoretical Methods

2.1 Quantum oscillators

Classical harmonic oscillation is a system of simple oscillation, its Hamilto-
nian is
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2.1.1 Bose oscillator
Let us define
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Let us determine (hide all hat over operator)
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Then determine

N(aln)) = (Na)ln) = (@N —@)}n) = (= )(aln))  (12)
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Since (n|a'aln) = n(n|n) = |cp)?(n —1n — 1) = ¢, = v (14)
N(al[n)) = (Nah)|n) = (al +a'N)|n) = (n+ 1)(al|n)) (15)
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Since (nlaa’|n) = (n|(1+ N)|n) = (n+ 1)(n|n) = |cpp1|*(n+ 1n + 1)
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Note that a lower n steps by one and a' increase n steps by one, so that n
can be integer start from zero, i.e., n =0,1,2,3,.... From (9), we get

E,=hw(n+1/2), n=0,1,2,... (18)

2.1.2 Fermi oscillator

Instead of (7), we rewrite the Hamiltonian in the form
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Let us determine
{Np,c} = Npc+ cNp = clec + cc’e = (cTe 4 ecl)e =
{Np,c'} = Npc' + ' Np = clec’ + cefe = el (cle + ect) = ¢
Then determine
Np(clnp)) = (Npc)lnp) = (¢ — cNp)|np) = (1 = np)(cnp))  (24)
Np(ctng)) = (Npch)ng) = (f = ' Np)lnp) = (1 —np)(cling)  (25)

We get similar action of ¢, c! on |ng), according to the action of N in (24,
25), let us assign
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So that np = 0,1, restricted. From (19) we get
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Note that Fermi oscillator has no real classical analog system.



2.2 Second quantization

For a generic one particle Hamiltonian, together with its Schrodinger equa-
tion
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Second quantization is assigned, reinvent the hat for second quantized op-
erators, in the form

E— H, ¢(x) = {(z) = de¢k(x) (30)
e

[ Easi@iou@) =, (<34 V@) ) ) —ain(a)  6)
From (29), we get
H= Zekalak (32)
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Note that ap can be Bose or Fermi oscillator, it depends on a quantum
particle we have described.
2.2.1 Tight-binding (TB) Hamiltonian

Schrodinger equation of an electron in periodic potential is

H= p—2 +V(r), Vir+R)=V(r) (33)
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where R is a lattice vector. Apply Bloch’s theorem in the form
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where u(r + R) = u(r) is Bloch function, while ¢;(r) is localized Wannier
function at the lattice site j. From (34) we will have
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Second quantization C; — ¢;, and £ — H, then we have (after forget about
the hat)

H=—tY (clej+cle), withj=ix1 (39)
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This is the TB Hamiltonian. Let us rewrite
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From (39)
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2.2.2 Magnetic systems
Magnetic system = localized spin lattice with Heisenberg interaction
H=-J)Y -5 (43)
<i,j>

where J > 0 the system is ferro magnet, while J < 0 the system is anti-
ferro magnet. (Other kinds magnetism are determined from loosely bound
electron magnetic moments, see later on Stoner theorem.)



A single spin operator S*, i = x, v, 2, can rewritten in second quantized
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form as
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where o = {1, ]} is spin state, ¢, is fermionic operator satisfy the algebra
{ca, CL, = 0a0/, and o is Pauli’s matrices
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From (44) we have
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The system of spins will be determined later.

2.3 Many-particle system

For a system N-particle with the Hamiltonian

N N
1
H = ZHOi + 5 Z V(Ti,T'j) (48)
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when Hy; is one particle Hamiltonian, and V(r;,7;) is two particle interac-
tion potential. Its state function is written in generic form as

Yarasan (11,72, 7N) = N €50y (rP1)@as (rp2)-pay (ren)  (50)
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where N is the normalization factor, P is permutation, and £ is statistical
factor, £ = +1 for bosonic system and £ = —1 for fermionic system. For



fermionic system 9o, ..ap (71, ..., n) is written in term of Slater determinant.
Schrodinger equation is

Hwal...aN (7'1, ceey 7’N) = Eoc1...aN1/}a1...o<N (r17 ceey TN) (52)
In one particle approximation, we have
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One particle energy is
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where+/— signs mean bosonic/fermionic particle, and this is the Fock (ex-
change) term. The first part (direct) is called Hartree term.
Second quantization is apply by writing
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/dgrapZ(r)Hogoa(r) = Zeka27aak7a, (56)

k
with €k5kk’ :/dST’QZ)};(T‘)Hng)k/(T) (57)

and with ¢y (r) =

-
—
.
>
3

1
=7 Z V(q)aLJrqaL,_qak/ak (58)
k7k/7q

6



The second quantized form of (54) is, forget the Hat,
1
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Bosonic system
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2.3.1 Hubbard model

For system of strong interacting electrons, they are nearly localized from
interaction. From (54) we can modified the second quantization in the form

=3 j05(r), / @1 (1) () = 63 (62)
7

Then we have
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It is the on site interaction term. So that (54) becomes

H = Ztij(c;{,acj—l,a +h.c)+U Z Nang (65)
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This is known as Hubbard Hamiltonian, according to J.C. Hubbard (1963).



2.4 Fock space

For a system of N-particle with n; particles occupied in the i** state and
n; = 0,1,2,... for boson and n; = 0,1 for fermion. With the fact that
N =", ni, we can define number state of N-particle in the form

‘N> = ]n1> X ’n2> X ... = |n1,n2, > — <N‘N/> =0NN/ (66)

We say that |N) span Fock space, the generalized Hilbert space as an infi-
nite direct product of Hilbet space. This stat when acted by the annihila-
tion/creation operators
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According to the fact that
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