
SCPY475-TCMP/ Lecture 3

3 Second Quantized Models

3.1 Free electron gas

For a system of non-interacting N-electrons, we have

H0 =
N∑
n=1

p2
n

2m
→ H0ψ

N
0 = EN0 ψ

N
0 (3.1)

ψN0 =
1√
N !

∑
p

(−)Pϕσ1(rP1...ϕσN (rPN ), (3.2)

with

∫
d3rϕ∗σ(r)ϕσ′(r) = δσσ′ → ϕ(r)σ =

1√
V

∑
k

ck,σe
ik·r (3.3)

EN0 =

N∑
n=1

εn → ε =
∑
σ,σ′

∫
d3rϕ∗σ(r)

p2

2m
ϕσ′(r)

=
∑
k,σ

εkc
†
k,σck,σ, εk =

h̄2k2

2m
(3.4)

Second quantization

ε→ Ĥ =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ, {ĉk,σ, ĉ

†
k′,σ′} = δkk′δσσ′ (3.5)

Fermi surface: Fermi momentum and Fermi energy∑
σ

〈c†k,σck,σ〉 = 2nk, nk = 0, 1 (3.6)

Assume a standing wave in a cubic volume V = L3, we will have

ψnx,ny ,nz(x, y, z) =
1√
V

sin(kxx) sin(kyy) sin(kzz) (3.7)

k = (kx, ky, kz), kx =
πnx
L
, ky =

πny
L
, kz =

πnz
L

(3.8)

k2 = k2
x + k2

y + k2
z =

π2

L2
(n2
x + n2

y + n2
z) =

π2

L2
n2 (3.9)

εk =
π2h̄2

2mL2
n2 (3.10)
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with n = (nx, ny, nz) where nx, ny, nz = 1, 2, 3, ..., and n2 = n2
x + n2

y + n2
z.

From (9) we can see that |n| = L
π |k|. Let n is number of occupied states,

nk = 1, then we have

N =

∫
dVn = 2× 1

8
× L3

π3

∫
d3k (3.11)

= 2× V

(2π)3
4π

∫ kF

0
k2dk = 2× V

(2π)3

4π

3
k3
F (3.12)

→ kF =
(
3π2nV

)1/3
, nV =

N

V
(3.13)

EF =
h̄2k2

F

2m
=
h̄2(3π2nV )2/3

2m
(3.14)

Note that a factor 2 = 2s + 1, where s is the spin of fermion, i.e. electron
spin is s = 1

2 , and a factor 1
8 comes from a chosen quadrant of positive

integers in 3D number space ~n = (nx, ny, nz).

Density of state, with E = h̄2k2

2m → k2 = 2mE
h̄2

, we have

(13)→ N =
V

3π2
k3 =

V

3π2

(
2mE

h̄2

)3/2

≡ N(E) (3.15)

D(E) =
dN(E)

dE
=

V

2π2

(
2m

h̄2

)3/2

E1/2 (3.16)

→ D(E) ∝ E1/2 (3.17)

The number of occupied states per unit energy E grows up as E1/2.
System at finite temperature T , with β = 1/kBT , we have particle dis-

tribution at energy ε in the form

n(ε) =
1

eβ(ε−µ) + 1
=

1

z−1eβε + 1
, µ = EF and z = eβµ (3.18)

where ε − µ > 0 is for particle, while ε − µ < 0 is for hole, in the particle-
hole picture, see Figure (3.1). Fermi temperature TF is determined from the
Fermi energy EF as

EF = kBTF → TF =
EF
kB

(3.19)

For typical system with EF = 2eV → TF = 2× 104K.
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Figure 3.1:

3.2 Free Bose gas

For a system of non-interacting N-bosons, we have

H0 =
∑
n

p2
n

2m
→ H0ψ

N
0 = EN0 ψ

N
0 → EN0 = 〈ψN0 |H0|ψN0 〉 (3.20)

ψN0 =
1√
N !

∑
P

(+)Pϕα1(rP1)...ϕαN (rPN ) (3.21)

ϕ(r) =
1√
V

∑
q

bqe
iq·r (3.22)

In one-particle approximation

EN0 =

N∑
n=1

εn → ε =

∫
d3rϕ∗(r)

p2

2m
ϕ(r) =

∑
q

εqb
†
qbq, εq =

h̄2q2

2m
(3.23)

Second quantization

ε→ H =
∑
q

εqb
†
qbq, [bq, b

†
q′ ] = δqq′ (3.24)

Actually at zero temperature T = 0K, all bosons will occupy in their
ground state at energy ε0 = 0. This is called Bose-Einstein Condensation
or BEC. Anyway, to get some information of the system let us determine it
at some finite temperature T , the particle distribution at energy ε is

n(ε) =
1

eβ(ε−µ) − 1
(3.25)

We can determine the number of particles occupied in their ground state as

n(ε0) =
1

e−βµ − 1
∼ 1

1− βµ+ ...− 1
∼ − 1

βµ
, with ε0 = 0 (3.26)
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This number diverges at µ→ 0. We may set a macroscopic number N0, as
the onset of BEC, then we have

N0 =
1

β|µ|
→ |µ| = kBT

N0
→ z = eβµ ∼ 1 + βµ = 1− β|µ| (3.27)

→ 1− z =
1

N0
(3.28)

Next let us evaluate the total number distribution n = N/V is

n =

∫ ∞
0

D(ε)dε

eβ(ε−µ) − 1
+

2s+ 1

V

z

1− z
(3.29)

D(ε) = A
√
ε, A =

2s+ 1

(2π)2

(
2m

h̄2

)3/2

(3.30)

Since

lim
µ→0

∫ ∞
0

A
√
εdε

eβ(ε−µ − 1
=

A

β3/2

∫ ∞
0

√
xdx

ex − 1
=

A

β3/2
· 2.61

Then we have

n = 2.61A(kBT )3/2 +
2s+ 1

V

1

e−βµ − 1
(3.31)

There is a critical temperature Tc such that

n = 2.61A(kBTc)
3/2 = 2.61

2√
π

2s+ 1

λ3
c

, with λc =

√
h2

2πmkBTc
(3.32)

where λc is called thermal wavelength. Note that the BEC transition takes
place at

nλ3
c

2s+ 1
= 2.62× 2√

π
' 2.9

when λc is about inter-particle distance.

3.3 Phonons

For a crystalline system with lattice vector ~R = n1â1 + n2â2 + n3â3, within
Born-Oppenheimer approximation the lattice Hamiltonian will be

H =
N∑
i=1

P 2
i

2M
+ V (R1, R2, ..., RN ) (3.33)
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Let R0 is the equilibrium lattice position, i.e., minimum energy, let us do
the Taylor’s expansion of the potential with small fluctuation R = R0 + u,
we will have

V ({R}) = V ({R0}) +
∑
i

uiVi({R0})︸ ︷︷ ︸
=0

+
1

2

∑
i,j

uiujVij({R0}) (3.34)

Let us set V ({R0}) = 0 for simplicity, and define Kij = Vij({R)}), small
lattice oscillations Hamiltonian will be

H =
∑
i

π2
i

2M
+

1

2

∑
ij

uiujKij , πi = Mu̇i (3.35)

This appear with system of classical harmonic oscillators. After its first and
second quantization we will have

H =
∑
q,α

h̄ωk,α(b†q,αbq,α +
1

2
), ω2

α =
Kα

M
(3.36)

where α = 1, 2 for longitudinal (acoustic) and transverse (optical) branches,
respectively.

3.4 Magnons

Magnetic matter is describe with Heisenberg’s Hamiltonian

H = −J
∑
<ij>

Si · Sj (3.37)

where J is magnetic coupling constant, i.e., J > 0 for ferromagnet and
J < 0 for anti-ferromagnet, and < ij > is nearest neighbor sites. Note that
S = (Sx, Sy, Sz) is spin operator. We also use raising and lowering spin
operators of the form S± = Sx ± iSy.

Apply Holstein-Primakoff transformation

S+ =
√

1− b†bb, S− = b†
√

1− b†b, Sz =
1

2
− b†b (3.38)

Then we have

Si · Sj = SixSjx + SiySjy + SizSjz

=
1

2
(S+
i S
−
j + S−i S

+
j ) + SizSjz (3.39)

=
1

2

(
bib
†
j + b†ibj − b

†
ibi − b

†
jbj +

1

2

)
+O(b4) (3.40)
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Since all spin align in some particular direction when temperature is below
Curie temperature TC . So that we assume b†ibi = 1 at T < TC , from (3.37)
we have

H = −3J

4
N(N − 1)︸ ︷︷ ︸
=E0

−J
2

∑
<ij>

(b†ibj + bib
†
j) (3.41)

Apply the plane wave expansion

bi =
1

N3/2

∑
k

bke
ik·xi , bk =

1

N3/2

∑
i

bie
−ik·xi (3.42)

bj = bi+1 =
1

N3/2

∑
k

bke
ik·(xi+a) (3.43)

Then we have

H = E0 +
∑
k

ωkb
†
kbk, ωk =

|J |
2

(2− cos(k · a)) (3.44)

There is magnon excitation spectrum over the magnetic ground state.
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