SCPY475-TCMP/ Lecture 3

3 Second Quantized Models

3.1 Free electron gas

For a system of non-interacting N-electrons, we have
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Fermi surface: Fermi momentum and Fermi energy
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Assume a standing wave in a cubic volume V = L3, we will have
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with n = (ng, ny,n.) where ng,ny,n, = 1,2,3, ..., and n? = n2 + nz +n2.
From (9) we can see that |n| = %]k| Let n is number of occupied states,
ng = 1, then we have
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Note that a factor 2 = 2s 4+ 1, where s is the spin of fermion, i.e. electron
spin is s = %, and a factor % comes from a chosen quadrant of positive
integers in 3D number space 7i = (ng, ny, nz).

Density of state, with E = RR 32 2mE o have
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The number of occupied states per unit energy E grows up as E1/2.
System at finite temperature 7', with § = 1/kpT, we have particle dis-
tribution at energy € in the form
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where € — > 0 is for particle, while e — u < 0 is for hole, in the particle-
hole picture, see Figure (3.1). Fermi temperature Tr is determined from the
Fermi energy Er as
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For typical system with Ep = 2eV — Tr = 2 x 10*K.
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Figure 3.1:

3.2 Free Bose gas

For a system of non-interacting N-bosons, we have
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In one-particle approximation
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Actually at zero temperature T = 0K, all bosons will occupy in their
ground state at energy eg = 0. This is called Bose-Finstein Condensation
or BEC. Anyway, to get some information of the system let us determine it
at some finite temperature 7', the particle distribution at energy e is
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We can determine the number of particles occupied in their ground state as
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This number diverges at ; — 0. We may set a macroscopic number Ny, as
the onset of BEC, then we have

1 kpT

No=—-———>lul="— s z=e~148u=1-8p 3.27
— z A .

Next let us evaluate the total number distribution n = N/V is
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where A, is called thermal wavelength. Note that the BEC transition takes
place at
nA3
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when A, is about inter-particle distance.

3.3 Phonons

For a crystalline system with lattice vector R = niaq + nods + nzas, within
Born-Oppenheimer approximation the lattice Hamiltonian will be
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Let Ry is the equilibrium lattice position, i.e., minimum energy, let us do
the Taylor’s expansion of the potential with small fluctuation R = Ry + w,
we will have
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Let us set V({Ro}) = 0 for simplicity, and define K;; = V;({R)}), small
lattice oscillations Hamiltonian will be
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This appear with system of classical harmonic oscillators. After its first and
second quantization we will have
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where oo = 1, 2 for longitudinal (acoustic) and transverse (optical) branches,
respectively.

3.4 Magnons

Magnetic matter is describe with Heisenberg’s Hamiltonian
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where J is magnetic coupling constant, i.e., J > 0 for ferromagnet and
J < 0 for anti-ferromagnet, and < 7j > is nearest neighbor sites. Note that
S = (S4,8y,S:) is spin operator. We also use raising and lowering spin
operators of the form S* =S, + 1Sy.
Apply Holstein-Primakoff transformation
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Since all spin align in some particular direction when temperature is below
Curie temperature Tz. So that we assume b;rbi =1at T < T¢, from (3.37)
we have
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Apply the plane wave expansion
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Then we have
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There is magnon excitation spectrum over the magnetic ground state.



