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5 System of Interacting Electrons

5.1 Jellium model of metals

For ionic crystal with ion density n = N/V| its electronic Hamiltonian in
second quantized form is

H=H.+H;; + Hi. + He (5.1)
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The dynamics of ionic lattices is ignored within Born-Oppenheimer approx-

imation. Let us apply the plane wave expansion of the electronic state
function operator ¥,(r) as
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Then we have from above
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where the ions are assumed to be uniform distribution, like a jelly.
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after we have applied the Fourier transformation of the potential
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Next let us calculate the quantum expectation of these Hamiltonian with
electronic ground state
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From (16), we will have
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where the first part is direct Coulomb interaction energy, and the second
part is the exchange interaction energy. Let us write
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See figures (5.1) and (5.2).
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Figure 5.2: Electron spectrum in Jellium model.

Let us define a local electron density in the bulk as
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and assume one electron is an extra from the bulk, so it perturbs the system
with extra potential +edV (r) and produces the variation of local density
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Figure 5.3: Electron density variation.

See figure (5.3). In spherical system V8§V = r~2d,.(r2d,V(r)), so that
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So that the extra electron feels screening Coulomb potential from the sur-
round electrons, with screening length

=1 (5.27)
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5.3 Dielectric function

From electrostatic, the external potential V. (r,t) will be related to poten-
tial in the bulk V' (r,t) by the dielectric function e, in Fourier space, as

Vert(k,w) = e(k,w)V (k,w) (5.29)

On the other hand, the potential in the bulk may be determined from the
combination of the external potential and the induced potential as

V= V:L'nd + ‘/ext (530)

where the induced potential arise from the electron density fluctuation in
the bulk as

V*Vina = =478 ping — k*Vina = 470 pind (5.31)
9 47re?
where dping = € XVewt = Vipa = WX‘/ext (5.32)



From above we will have
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where x is known as density-density correlation function.

5.4 Plasma oscillation

5.5 Friedel oscillation

5.6 Fermi liquid theory
Appendix: Correlation function

There are at least to kinds of quantum operators in quantum mechanics.

Schrodinger operator Og is time-independent, its quantum expectation value

is derived from time-dependent state function |¢(¢)) from Schrodinger equa-
tion

ihO(t)) = H|p(t)), H # H(t) (5.34)
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Heisenberg operator O (t) is time dependent and is related to Schrodinger
operator through similarity transformation and satisfy Heisenberg equation

Ox(t) = Ut ®)OU (1), U(t) = e /P (5.36)
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Its quantum expectation value is derived from time-independent Heisenberg
state [1(0)) as
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Let n(r) be local number density operator, its Heisenberg operator is n(r,t) =
et/ (r)e= /" The density correlation function is defined to be

X(t, ) = —i([n(t), n(t)])O(t — 1) (5.39)



