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5 System of Interacting Electrons

5.1 Jellium model of metals

For ionic crystal with ion density n = N/V , its electronic Hamiltonian in
second quantized form is

H = He +Hii +Hie +Hee (5.1)

where

He =
∑
s

∫
d3rψ†s(r)

p2

2m
ψs(r) (5.2)

Hii =
1

2

∫
d3R

∫
d3R′n(R)n(R′)

e2

|R−R′|
(5.3)

Hie = −
∑
s

∫
d3r

∫
d3Rψ†sn(R)

e2

|r −R|
ψs(r) (5.4)

Hee =
1

2

∑
ss′

∫
d3r

∫
d3r′ψ†s(r)ψ

†
s′(r
′)

e2

|r − r′|
ψs′(r

′)ψs(r) (5.5)

The dynamics of ionic lattices is ignored within Born-Oppenheimer approx-
imation. Let us apply the plane wave expansion of the electronic state
function operator ψs(r) as

ψs(r) =
1√
V

∑
k

ck,se
ik·r (5.6)

Then we have from above

He =
∑
kk′,s

c†k,sck′,s
1

V

∫
d3re−ik·r

(
−h̄2

2m
∇2

)
eik
′·r

=
∑
kk′,s

h̄2k2

2m
c†k,sck′,s

1

V

∫
d3re−i(k−k

′)·r︸ ︷︷ ︸
=δkk′

=
∑
k,s

h̄2k2

2m
c†k,sck,s (5.7)

Hii =
1

2
N2

∫
d3R

∫
d3R′

e2

|R−R′|
=

1

2
N2V (0) (5.8)
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where the ions are assumed to be uniform distribution, like a jelly.

Hie = −
∑
kk′,s

c†k,sck′,s
1

V

∫
d3r

∫
d3R

n(R)e2

|r −R|
ei(k−k

′)·r︸ ︷︷ ︸
fkk′

=
∑
kk′,s

fkk′c
†
k,sck′,s (5.9)

Hee =
1

2V

∑
ss′

∑
kk′k′′k′′′q

V (q)c†k′′′,sc
†
k′′,s′ck′,s′ck,s

× 1

V

∫
d3re−i(k

′′′−k−q)·r︸ ︷︷ ︸
δk′′′=k+q

1

V

∫
d3r′e−i(k

′′−k′+q)·r︸ ︷︷ ︸
=δk′′=k′−q

=
1

2V

∑
k,k′,q,s,s′

V (q)c†k+q,sc
†
k′−q,s′ck′,s′ck,s (5.10)

after we have applied the Fourier transformation of the potential

V (r − r′) =
1

V

∑
q

V (q)eiq·(r−r
′), V (r − r′) =

e2

|r − r′|
→ V (q) =

4πe2

q2

Next let us calculate the quantum expectation of these Hamiltonian with
electronic ground state

|Ω〉 = ΠsΠk≤kF c
†
k,s|0〉, (5.11)

〈Ω|c†k,sck,s|Ω〉 = nk,s =

{
1, 0 < k ≤ kF
0, k > kF

(5.12)

Then we have

Ekin =
∑
k,s

h̄2k2

2m
〈Ω|c†k,sck,s|Ω〉 =

∑
k,s

h̄2k2

2m
nk,s (5.13)

and

Eii =
1

2
N2V (0) (5.14)

Eie = −
∑
k,k′,s

fkk′〈Ω|c†k,sck′,s|Ω〉 = −
∑
k,k′,s

fkk′nk,sδkk′ = −N2V (0) (5.15)
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Eee =
1

2V

∑
k,k′,q

∑
s,s′

V (q)〈Ω|c†k+q,sc
†
k′−q,s′ck′,s′ck,s|Ω〉 (5.16)

Since

c†k+q,sc
†
k′−q,s′ck′,s′ck,s = c†k+q,s

(
δk′−q,k′ − ck′,s′c†k′−q,s′

)
ck,s

= δq=0c
†
k+q,sck,s − c

†
k+q,sck′,s′c

†
k′−q,s′ck,s

= δq=0c
†
k+q,sck,s − δk+q,k′δss′c

†
k′−q,s′ck,s

+ck′,s′c
†
k+q,sc

†
k′−q,s′ck,s (5.17)

From (16), we will have

Eee =
1

2
N2V (0)− 1

2V

∑
q=k−k′

∑
k,k′,s

V (q)nk,snk′,s (5.18)

where the first part is direct Coulomb interaction energy, and the second
part is the exchange interaction energy. Let us write

Eee =
∑
k

Ek → Ek =
h̄2k2

2m
− 2πe2

V

∑
k′≤kF

1

|k − k′|2
(5.19)

→ Ek =
h̄2k2

2m
− 2e2kF

π
F (x), x =

k

kF
(5.20)

where

1

V

∑
k′≤kF

1

|k − k′|2
=

1

(2π)3

∫
k′≤kF

d3k′
1

k2 + k′2 − 2kk′ cos θ′

=
1

4π2

∫ kF

0
dk′k′2

∫ +1

−1
d cos θ′

1

k2 + k′2 − 2kk′ cos θ′

=
1

4π2

∫ kF

0
dk′k′2

1

kk′
ln

∣∣∣∣k + k′

k − k′

∣∣∣∣ =
1

4π2k

∫ kF

0
dk′k′ ln

∣∣∣∣k + k′

k − k′

∣∣∣∣
=

1

4π2

(
k2
F − k2

k
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣+ 2kF

)
=
kF
π2

(
1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+
1

2

)
=
kF
π2
F (x) (5.21)

See figures (5.1) and (5.2).
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Figure 5.1: Graph of F (x) function.

Figure 5.2: Electron spectrum in Jellium model.

5.2 Sreening effect

Let us define a local electron density in the bulk as

n(rbulk) '
∫ εF

0
N(ε)dε (5.22)

and assume one electron is an extra from the bulk, so it perturbs the system
with extra potential +eδV (r) and produces the variation of local density

δn(r) '
∫ εF +eδV (r)

0
N(ε)dε−

∫ εF

0
N(ε)dε ' eN0δV (r) (5.23)

→ ∇2δV (r) = 4πeδn(r) = 4πe2N0δV (5.24)
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Figure 5.3: Electron density variation.

See figure (5.3). In spherical system ∇δV = r−2dr(r
2drV (r)), so that

d2
rδV (r) +

2

r
drδV (r) = 4πe2N0︸ ︷︷ ︸

κ2

δV (t) = κ2δV (r) (5.25)

→ δV (r) = −2e
e−κr

r
(5.26)

So that the extra electron feels screening Coulomb potential from the sur-
round electrons, with screening length

l =
1

κ
(5.27)

Since kF = (3π2n)1/3, a0 = h̄2/me2, and N0 = mkF /h̄
2π2, then we have

κ2 =
a0π

4(3π2n)1/3
' a0

4n1/3
→ l ' 1

2
(a3

0/n)1/6 (5.28)

5.3 Dielectric function

From electrostatic, the external potential Vext(r, t) will be related to poten-
tial in the bulk V (r, t) by the dielectric function ε, in Fourier space, as

Vext(k, ω) = ε(k, ω)V (k, ω) (5.29)

On the other hand, the potential in the bulk may be determined from the
combination of the external potential and the induced potential as

V = Vind + Vext (5.30)

where the induced potential arise from the electron density fluctuation in
the bulk as

∇2Vind = −4πδρind → k2Vind = 4πδρind (5.31)

where δρind = e2χVext → Vind =
4πe2

k2
χVext (5.32)
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From above we will have

ε(k, ω) =
1

1 + 4πe2

k2
χ(k, ω)

(5.33)

where χ is known as density-density correlation function.

5.4 Plasma oscillation

5.5 Friedel oscillation

5.6 Fermi liquid theory

Appendix: Correlation function

There are at least to kinds of quantum operators in quantum mechanics.
Schrodinger operator OS is time-independent, its quantum expectation value
is derived from time-dependent state function |ψ(t)〉 from Schrodinger equa-
tion

ih̄∂t|ψ(t)〉 = H|ψ(t)〉, H 6= H(t) (5.34)

〈O〉(t) = 〈ψ(t)|Os|ψ(t)〉 (5.35)

Heisenberg operator OH(t) is time dependent and is related to Schrodinger
operator through similarity transformation and satisfy Heisenberg equation

OH(t) = U †(t)OsU(t), U(t) = e−iHt/h̄ (5.36)

ih̄∂tOH(t) = [OH(t), H] (5.37)

Its quantum expectation value is derived from time-independent Heisenberg
state |ψ(0)〉 as

|ψ(t)〉 = U(t)|ψ(0)〉 → 〈O〉(t) = 〈ψ(0)|U †(t)OS |U(t)|ψ(0)〉
= 〈ψ(0)|OH(t)|ψ(0)〉 (5.38)

Let n(r) be local number density operator, its Heisenberg operator is n(r, t) =
eiHt/h̄n(r)e−iHt/h̄. The density correlation function is defined to be

χ(t, t′) = −i〈[n(t), n(t′)]〉θ(t− t′) (5.39)
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