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6 Methods of Green’s Functions

Let us work in the unit in which Plank’s constant is measured to be one,
h̄ = 1.

6.1 Pictures of quantum dynamics

6.1.1 Schrodinger picture

Let |ψ(t)〉 be a time dependent state vector of quantum system, satisfy
Schrodinger’s equation

i∂t|ψ(t)〉 = H|ψ(t)〉 (6.1)

where H 6= H(t) is the system Hamiltonian, normally time independent for
stationary system. Let O = O(, x, p) be an operator of any physics property
of the system, its quantum expectation value is

〈O〉(t) = 〈ψ(t)|O|ψ(t)〉 (6.2)

It is normally time dependent according to the state vector. This is or famil-
iar form of quantum calculation, it is called Schrodinger picture, characterize
by time dependent state vector |ψ(t)〉S and time-independent physical op-
erator OS , where the subscribe S is added for clarity.

6.1.2 Heisenberg picture

Let us define time-evolution operator U(t, 0), applied on the Schrodinger
state vector as

|ψ(t)〉S = U(t, 0)|ψ(0)〉S (6.3)

Apply to (6.1), we get

i∂rU(t, 0) = HU(t, 0)→ U(t, 0) = e−iHt, with U(0, 0) = 1 (6.4)

This show that U(t, 0) is unitary operator. Apply to (6.2), we have

〈O〉(t) = S〈ψ(0)|U †(t, 0)OSU(t, 0)|ψ(0)〉S = H〈ψ|OH(t)|ψ〉H (6.5)

where we have define Heisenberg picture of state vector and operator as

|ψ〉H = |ψ(0)〉S , OH(t) = U †(t, 0)OSU(t, 0) (6.6)
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From this assignment we observe that

i∂tOH(t) = −HOH(t) +OH(t)H = [OH(t), H] (6.7)

This is called Heisenberg’s equation. So that in Heisenberg picture, dynamics
of quantum system appear in an operator, with static state vector.

6.1.3 Interaction picture

In case of the interacting system where the separation of the system Hamil-
tonian can be done as

H(t) = H0 + V (6.8)

Let us define the time evolution operator U0(t, 0) and define the interacting
state vector as

U0(t, 0) = e−iH0t → |ψ(t)〉S = U0(t, 0)|ψ(t)〉I (6.9)

(6.1)→ i∂t|ψ(t)〉t = VI(t)|ψ(t)〉I (6.10)

where the interacting picture of quantum operator is defined from the Schrodinger
operator as

OI(t) = U †0(t, 0)OSU0(t, 0) = U †0(t, 0)U(t, 0)OH(t)U †(t, 0)U0(t, 0) (6.11)

= UI(t, 0)OH(t)U †I (t, 0), where UI(t, 0) = U †0(t, 0)U(t, 0) (6.12)

From (6.11), we have

i∂tOI(t) = −H0OI(t) +OI(t)H0 = [OI(t), H0] (6.13)

From (6.12), we will have

i∂tUI(t, 0) = −H0U
†
0(t, 0)U(t, 0) + U †0(t, 0)HU(t, 0)

= VI(t)UI(t, 0) (6.14)

By direct integration, with some iterations, we get

UI(t, 0) = 1− i
∫ t

dt′VI(t
′)UI(t

′, 0) (6.15)

= 1− i
∫ t

dt′VI(t
′) + (−i)2

∫ t

dt′
∫ t′

dt′′VI(t
′)VI(t

′′) + ...

(6.16)
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Using identity∫ t

dt′
∫ t′

dt′′VI(t
′)VI(t

′′) =
1

2

∫ t

dt′
∫ t

dt′′T [VI(t
′)VI(t

′′)] (6.17)

and generalize to ∫ t

dt1

∫ t1

dt2...

∫ tn−1

dtnVI(t1)...VI(tn)

=
1

n!

∫ t

dt1

∫ t

dt2...

∫ t

dtnT [VI(t1)...VI(tn)] (6.18)

where T is time-ordering operator. From (6.16), we will have

UI(t, 0) = 1 +
∞∑
n=1

(−i)n

n!

∫ t

dt1...

∫ t

dtnT [VI(t1)...VI(tn)]

= T exp

{
−i
∫ t

dt′VI(t
′)

}
(6.19)

6.2 Many-body Green’s functions

Let ψ(x, t) be second quantized state function operator, it is born to be
Heisenberg operator, and derived from Schrodinger equation in the first
quantization. The casual Green function is defined in term of the time-
ordered product of state function operator as

iG(x, t;x′, t′) =
〈Ω|T [ψ(x, t)ψ†(x′, t′)]|Ω〉

〈Ω|Ω〉
(6.20)

where |Ω〉 is the ground state (numbering) of the system. For non-interacting
system we have 〈Ω0|Ω0〉 = 1, and

iG0(x, t;x
′, t′) = 〈Ω0|T [ψ(x, t)ψ†(x′, t′]|Ω0〉 (6.21)

= θ(t− t′)〈Ω0|ψ(x, t)ψ†(x′, t′)|Ω0〉
±θ(t′ − t)〈Ω0|ψ†(x′, t′)ψ(x, t)|Ω0〉 (6.22)

= G>(x, t;x′, t′)±G<(x, t;x′, t′) (6.23)

where the (+) signe is for bosonic operators, while the (−) sign is for
fermionic operators. They are called greater and lesser Green’s function,
respectively. We also have retarded and advanced Green’s functions, which
are defined as

GR(x, t;x′, t′) = θ(t− t′)〈Ω0|[ψ(x, t), ψ†(x′, t′)]∓|Ω0〉 (6.24)

GA(x, t;x′, t′) = −θ(t′ − t)〈Ω0|[ψ(x, t), ψ†(x′, t′)]∓|Ω0〉 (6.25)
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They are related to the greater and lesser Green’s functions as

GR(x, t;x′, t′) = θ(t− t′)
(
G>(x, t;x′, t′)−G<(x, t;x′, t′)

)
(6.26)

GA(x, t;x′, t′) = −θ(t′ − t)
(
G<(x, t;x′, t′)−G>(x, t;x′, t′)

)
(6.27)

For more convenient let us assign t = t, t′ = 0, and we also denote
ψ(x, 0) = ψ(x). Applying the expansion

ψ(x, t) =
1√
V

∑
k

ak(t)e
ik·x (6.28)

From above we will have

iG0(x, x
′; t) =

1

V

∑
k

eik·(x−x
′)
(
θ(t)〈Ω0|ak(t)a†k′(0)|Ω0〉

±θ(−t)〈Ω0|a†k′(0)ak(t)|Ω0〉
)

(6.29)

≡ i
∫

d3k

(2π)3
eik·(x−x

′)G0(k, t) (6.30)

Then we have

iG0(k, t) = θ(t)〈Ω0|ak(t)a†k′(0)|Ω0〉 ± θ(−t)〈Ω0|a†k′(0)ak(t)|Ω0〉 (6.31)

Let us apply to simple systems.

6.2.1 Free fermions

We have

H =
∑
k

ξkc
†
kck, {ck, c

†
k′} = δkk′(6.32)

i∂tck(t) = [ck(t), H] = ξkck(t)→ ck(t) = e−iξktck(6.33)

(6.31)→ iG(k, t) = θ(t)e−iξkt〈Ω0|ckc†k|Ω0〉 − θ(−t)e−iξkt〈Ω0|c†kck|Ω0〉
= θ(t)e−iξkt(1− nk)− θ(−t)e−iξktnk(6.34)

with

nk = 〈Ω0|c†kck|Ω0〉 =

{
1, k ≤ kF
0, k > kF

(6.35)

Using identity

θ(±t) = lim
η→0

±i
2π

∫ ∞
−∞

dω
e−iωt

ω ∓ iη
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And apply the Fourier transformation of the Green’s function

G(k, t) =

∫
dω

2π
e−iωtG(k, ω) (6.36)

G(k, ω) =
1− nk

ω − ξk + iη
− nk
ω − ξk − iη

(6.37)

From above we have

G>(k, ω) =
1− nk

ω − ξk + iη
, G<(k, ω) = − nk

ω − ξk − iη
(6.38)

GR(k, ω) =
1

ω − ξk + iη
, GA(k, ω) =

1

ω − ξk − iη
(6.39)

6.2.2 Free bosons

We have

H =
∑
q

ωqb
†
qbq, [bq, b

†
q′ ] = δqq′ (6.40)

i∂tbq(t) = [bq(t), H] = ωbq(t)→ bq(t) = e−iωqt, b†q(t) = eiωqtb†q (6.41)

φq = bq + b†−q → φqφ
†
q = (bq + b†−q)(b

†
q + b−q)

= bqb
†
q + b†−qb−q + b†−qb

†
q + bqb−q (6.42)

From (6.31), we have

D>(q, t) = θ(t)〈Ω0|φq(t)φ†q(0)|Ω〉

= θ(t)
(
〈Ω0|bq(t)b†q(0)|Ω0〉+ 〈Ω0|b†−q(t)b−q(0)|Ω0〉

)
= θ(t)

(
e−iωqt(1 + nq) + eiωqtnq

)
(6.43)

After we have used the fact that ω−q = ωq and n−q = nq. Apply its Fourier
transformation, we have

D>(q, ω) =
1 + nq

ω − ωq + iη
+

nq
ω + ωq + iη

(6.44)

Similar analysis we can have

D<(q, ω) =
nq

ω − ωq − iη
+

1 + nq
ω + ωq − iη

(6.45)

And we will have

DR(q, ω) =
1

ω − ωq + iη
− 1

ω + ωq + iη
=

2ωq
ω2 − ω2

q

(6.46)

DA(q, ω) =
1

ω − ωq − iη
− 1

ω + ωq − iη
=

2ωq
ω2 − ω2

q

(6.47)
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6.3 Spectral representation

For a system of N-fermions, we will have |ΩN
0 〉 as its ground state with

energy EN0 . The fermionic Green’s function is then read

iG0(k, t) = θ(t)〈ΩN
0 |ak(t)a

†
k(0)|ΩN

0 〉
−θ(−t)〈ΩN

0 |a
†
k(0)ak(t)|ΩN

0 〉 (6.48)

= θ(t)
∑
n

〈ΩN
0 |ak(t)|ΩN+1

n 〉〈ΩN+1
n |a†k(0)|ΩN

0 〉

−θ(−t)
∑
n

〈ΩN
0 |a
†
k(0)|ΩN−1

n 〉〈ΩN−1
n |ak(t)|ΩN

0 〉 (6.49)

= θ(t)
∑
n

〈ΩN
0 |eiHtak(0)e−iHt|ΩN+1

n 〉〈ΩN+1
n |a†k(0)|ΩN

0 〉

−θ(−t)
∑
n

〈ΩN
0 |a
†
k(0)|ΩN−1

n 〉〈ΩN−1
n |eiHtak(0)e−iHt|ΩN

0 〉 (6.50)

= θ(t)
∑
n

e−i(E
N+1
n −EN

0 )t〈ΩN
0 |ak(0)|ΩN+1

n 〉〈ΩN+1
n |a†k(0)|ΩN

0 〉

−θ(−t)
∑
n

ei(E
N−1
n −EN

0 )t〈ΩN
0 |a
†
k(0)|ΩN−1

n 〉〈ΩN−1
n |ak(0)|ΩN

0 〉 (6.51)

= θ(t)
∑
n

e−i(E
N+1
n −EN

0 )t|〈ΩN+1
n |a†k|Ω

N
0 〉|2

−θ(−t)
∑
n

ei(E
N−1
n −EN

0 )t|〈ωN0 |a
†
k|Ω

N−1
n 〉|2 (6.52)

Apply Fourier transformation, we have

G(k, ω) =
∑
n

(
|〈ΩN+1

n |a†k|Ω
N
0 〉|2

Ω− (EN+1
n − EN0 ) + iη

+
|〈ΩN

0 |a
†
k|Ω

N−1
n 〉|2

ω + (EN−1n − EN0 )− iη

)
(6.53)

Now let us define

EN+1
n − EN0 = (EN+1

n − EN+1
0 ) + (EN+1

0 − EN0 ) = εk + µ, k > kF (6.54)

EN1
n − EN0 = (EN1

n − EN−10 )− (EN0 − EN−10 ) = εk − µ, k ≤ kF (6.55)

Then define spectral functions

A(k, ω) =
∑
n

|〈ΩN+1
n |a†k|Ω

N
0 〉|2δ(ω − εk − µ) = δ(ω − εk − µ) (6.56)

B(k, ω) =
∑
n

|〈ΩN
0 |a
†
k|Ω

N−1
n 〉|2δ(ω − εk + µ) = δ(ω − εk + µ) (6.57)
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for non-interacting fermions. One can write the fermionic Green’s function
in its spectral representation as

G(k, ω) =

∫
dω′

(
A(k, ω′)

ω − ω′ + iη
− B(k, ω′)

ω − ω′ − iη

)
(6.58)

From the identity
1

x± iη
= P

(
1

x

)
± iπδ(x)

We observe that

A(k, ω) =
1

π
ImG>(k, ω) (6.59)

B(k, ω) =
1

π
ImG<(k, ω) (6.60)

These are generic form of contribution of spectral function in the Green’s
function. From Kramer-Kronig relation we will have

ReG(k, ω) =
1

π
P

∫ ∞
−∞

dω′
ImG(k, ω′)

ω − ω′
(6.61)

ImG(k, ω) = − 1

π
P

∫ ∞
−∞

dω′
ReG(k, ω′)

ω − ω′
(6.62)

6.4 Thermal Green’s function

Let there be thermal operator

ρ = e−βH , β =
1

kBT
, → Z = Tre−βH (6.63)

〈〈O〉〉 =
1

Z
Tr[ρO] (6.64)

Thermal Green’s function is defined by first applying Wick’s rotation of the
real to imaginary time t → −iτ , so that the quantum Heisenberg operator
will changed to be

ak(t) = eiHtake
−iHt → ak(τ) = eτHake

−τH (6.65)

And thermal Green’s function is defined in the form

G(k; τ, τ ′) = −〈〈Tτ [ak(τ)a†k(τ
′)]〉〉 (6.66)

In general, G(k; τ, τ ′) = G(k; τ − τ ′), since

τ, τ ′ ∈ [0, β]→ τ − τ ′ ∈ [−β, β]
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And there will be (periodicity/anti-periodicity) of (bosonic/fermionic) ther-
mal Green’s function. Let us determine, for τ − β > 0,

G(k; τ − β) = − 1

Z
Tr
[
ak(τ − β)a†k(0)

]
(6.67)

6.5 Matsubara frequencies
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