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6 Methods of Green’s Functions

Let us work in the unit in which Plank’s constant is measured to be one,
h=1.

6.1 Pictures of quantum dynamics

6.1.1 Schrodinger picture

Let |¢(t)) be a time dependent state vector of quantum system, satisfy
Schrodinger’s equation

i0:|1h (1)) = H|y (1)) (6.1)

where H # H(t) is the system Hamiltonian, normally time independent for
stationary system. Let O = O(, z,p) be an operator of any physics property
of the system, its quantum expectation value is

(0)(t) = (¥ (B)|Ofp(t)) (6.2)

It is normally time dependent according to the state vector. This is or famil-
iar form of quantum calculation, it is called Schrodinger picture, characterize
by time dependent state vector [¢(t))s and time-independent physical op-
erator Og, where the subscribe S is added for clarity.

6.1.2 Heisenberg picture

Let us define time-evolution operator U(t,0), applied on the Schrodinger
state vector as

[¥(t))s = UL, 0)[4(0))s (6.3)
Apply to (6.1), we get
i0.U(t,0) = HU(t,0) — U(t,0) = e *Ht with U(0,0) = 1 (6.4)
This show that U(¢,0) is unitary operator. Apply to (6.2), we have
(0)(t) = s W)U (£, 0)0sU (£ 0)[¥(0)s = 5 (WIOHB)r  (65)
where we have define Heisenberg picture of state vector and operator as

W) = [4(0))s, Om(t)=U'(t,0)0sU(t,0) (6.6)



From this assignment we observe that
i0,0u(t) =—HOu(t) + Ou(t)H = [On(t), H] (6.7)

This is called Heisenberg’s equation. So that in Heisenberg picture, dynamics
of quantum system appear in an operator, with static state vector.

6.1.3 Interaction picture

In case of the interacting system where the separation of the system Hamil-
tonian can be done as

H(t)=Hy+V (6.8)

Let us define the time evolution operator Uy(t,0) and define the interacting
state vector as

Uo(t,0) = e~ — [3h(t)) s = U(t,0) 4 () r (6.9)
(6.1) = 10 |ib(t))e = Vi) (t)) 1 (6.10)

where the interacting picture of quantum operator is defined from the Schrodinger
operator as

Or(t) = Ul (t,0)05Us(t,0) = Ul (t,0)U (t,0)05 (YU (t,0)Us(t,0) (6.11)
= U;(t,0)05 (1)U} (t,0), where U(t,0) = Ul(t,0)U(t,0) (6.12)

From (6.11), we have
10:01(t) = —HpO1(t) + Or(t)Ho = [O(t), Ho| (6.13)
From (6.12), we will have

iOU(t,0) = —HoUJ(t,0)U(t,0) + Ul (t,0)HU(t,0)
= Vi()U;(t,0) (6.14)

By direct integration, with some iterations, we get
t
Us(t,0) = Lﬁ/dﬂﬂﬂ%@ﬂ) (6.15)

— 1—i/tdt’Vj(t’)—i—(—z’)Q/tdt'/t dt"Vi()Vi(¢") + ...
(6.16)



Using identity

t/
/ dt’ / dt" Vit Vi(t") / dt’ / dt" TV (Vi (#") (6.17)

and generalize to

/meQ/MﬁWHXM>
= [ [Carviey. i) @19

where T is time-ordering operator. From (6.16), we will have

m@m:1+z7ﬂ/m /ﬁT%uiﬂﬂ

n=1

= Texp{—i/ dt’VI(t’)} (6.19)

6.2 Many-body Green’s functions

Let 1(z,t) be second quantized state function operator, it is born to be
Heisenberg operator, and derived from Schrodinger equation in the first
quantization. The casual Green function is defined in term of the time-
ordered product of state function operator as

QT (x, )yt (', 1)]12)
(©[2)
where |Q2) is the ground state (numbering) of the system. For non-interacting
system we have (9|2) = 1, and
iGo(,t:2',t') = (Qo|T(x, ) (2, ¢]|0) (6.21)
=0t — )l (e, Y (', 1)[00)
(' — 1)(Q[¢ (2, )2, )[Q)  (6.22)
= G7(z,t;2,t) £ G (z,t;2',t) (6.23)

iG(z, t; 2", t) =

(6.20)

where the (+) signe is for bosonic operators, while the (—) sign is for
fermionic operators. They are called greater and lesser Green’s function,
respectively. We also have retarded and advanced Green’s functions, which
are defined as

Gl (x,t; 2" 1) = 0(t — ') (Qol[(x, 1), ¥T (', 1)]x]Q0) (6.24)
Gz, t;a! ) = —0(t — £)(Qo| [ (2, 1), T (2, )] |Q) (6.25)



They are related to the greater and lesser Green’s functions as

Gz, t;2/ t) = 0(t — ) (G~ (2, 12/, t) — G~ (2, 1;2', 1)) (6.26)
GAMa, t; 2 ) = —0(t' —t) (G<(x,t; 2 t) - G (.t x',t')) (6.27)

For more convenient let us assign ¢t = ¢, ' = 0, and we also denote
¥(x,0) = ¢(z). Applying the expansion

\/1? S ax(t)e (6.28)
k

From above we will have

iGo(z,2';t) Zem (e=a’ ( ){Qolak(t )ak’( )[€20)

£0(—1) (Qolal, (0)ar()Q%))  (6.29)
3 _ .
y / (;’;Se@k'(x—x Golkt)  (6.30)

Then we have
iGo(k, t) = 0(t)(Qolar(t)al, (0)|Q) £ O(—t)(Qla], (0)ak ()| Q)  (6.31)

Let us apply to simple systems.

6.2.1 Free fermions

We have

H = Zﬁkclt%, {crr e} = Gra(6.32)
k

iatck(t) = [Ck(t),H] = §kck(t) — Ck(t) = 6ii£ktck(6.33)
(6.31) — iG(k, ) = 0(t)e ™ (Qo|crel Qo) — O(—t)e ™+ (Qp|cl x| Q)
= 0(t)e (1 — ny) — O(—t)e "+, (6.34)
with
_ t |1, E<kp
m= (Ouleenton ={ ¢} S5 (6.35)

Using identity

; 00 —iwt
O(£t) = hmiz/ dw-S—

=021 J_ wFin
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And apply the Fourier transformation of the Green’s function
dw _;
Gk, t) = | —e ™Gk
(1) = [ o G(0w)
1-— ng ng

G(k’w):w—fwri??_w—&c—iﬂ

From above we have

1—mng ng
G>k, :%,G<k7w:—7,
)= gt = s
1 1
GER kw)y=——, G4 kiw)= ——7—7¥—
(k) w— & +in (k) w—E& —1in

6.2.2 Free bosons
We have

H =" weblby, [bg,bl,] = dyq
q
101by(t) = [by(t), H] = wby(t) — by(t) = et bg(t) _ ei“qtbz
bg = by + b1, = Gy} = (bg + b1 ) (0 +b_y)
= bgb] + bl b + bLBh + bb g
From (6.31), we have

D7 (g, 1) = 0(t){Qldg(t)0}(0)|2)

= 0(t) ({20104 (£)05(0)[90) + (6L, (£)b—4(0)[2))

=0(t) (e_iw‘it(l +ng) + ei‘”qtnq)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

After we have used the fact that w_; = wy and n_; = n,. Apply its Fourier

transformation, we have
1+mny Ng

D (q,w) =
(0,w) W—wg i w4wg+in

Similar analysis we can have
n I+n
q q

D= =
(4,w) W—wg— 1 W wg—in

And we will have

DR(qw): 1 L 1 _ 2wyq
’ Ww—wg+in wHwgtin  w?—w?
DAgu)= — - — L2
’ W—wg— i whw—in w?—w?

!

(6.44)

(6.45)

(6.46)

(6.47)



6.3 Spectral representation

For a system of N-fermions, we will have |Q)) as its ground state with
energy Eév . The fermionic Green’s function is then read

iGo(k,t) = 0(t) (Y |ax (t)al.(0)1Q))
—0(—t)(2) [af (0)ax(1)|Q))  (6.48)
= 0() S () Jar (DY@ al (0)]0))

n

—0(—t) Y (W |af ()| QN QN Har(t)Q))  (6.49)

n

= 0(t) > () [e™ ay,(0)e HHQN TV QN al (0)10)

n

—0(=) (4 lal ()2 1) @) e a(0)e Q) (6.50)
:e<t>Ze—ZEé““—EéV>t<ﬂéV|ak<o>|ﬂﬁ+1><nﬁ+1|az<o>|ﬂév>
—9<—t>nzei<Eff1—E0N>t<ﬂévraz<o>|sz£¥—1><ﬂff—1|ak<o>|széV> (6.51)

n = 0(t) Y e T ED QY af 0f)

(EN-1_EN _
—0(—t) > Er T EO W o] [QY T2 (6.52)

Apply Fourier transformation, we have

QN+1 TQN 2 QN TQN—I 2
Gllnw) = 3 [~ HOTONE | KO E Y oy
Q—(Ex ™ —EM)+in  w+ (B = EY)—in

n
Now let us define

ENTL BN = (BN — B + (BT — EY) = ep + 1, k> kp (6.54)
BN - Y = (BN — BN — (B — EY ) = — . k< kr (6.55)

Then define spectral functions

Alk,w) = 31OV a10)) o — ek — 1) = 6w — ek — 1) (6.56)

n

B(k,w) =Y | al|O) ) P0(w — e+ 1) = 0(w — e+ ) (6.57)

n



for non-interacting fermions. One can write the fermionic Green’s function
in its spectral representation as

Gk w) = / dw’< Atk,o) _Bkw) ) (6.58)

w—w’—i—in_w—w’—in

From the identity

! — =P <1) +imd(x)
x L1in x

We observe that

Ak, w) = %ImG>(k,w) (6.59)
B(k,w) = %ImG<(k:,w) (6.60)

These are generic form of contribution of spectral function in the Green’s
function. From Kramer-Kronig relation we will have

1 & I !
ReG(k,w) = P/ W’M (6.61)
T ) w—w
1 o0 ko'
ImG(k,w) = — =P / dw’w (6.62)
T ) w—w
6.4 Thermal Green’s function
Let there be thermal operator
1
p=e , B T — 7 re (6.63)
1
(O) = - TrlpO] (6.64)

Thermal Green’s function is defined by first applying Wick’s rotation of the
real to imaginary time ¢ — —i7, so that the quantum Heisenberg operator
will changed to be

ar(t) = elage ™ — qp (1) = e Hape ™ (6.65)
And thermal Green’s function is defined in the form
Gk;m.7') = —(T+lan(r)aj(+')]) (6.66)
In general, G(k;7,7") = G(k; 7 — 7'), since

7 e0,8] = 17—1 €[-8,0]



And there will be (periodicity /anti-periodicity) of (bosonic/fermionic) ther-
mal Green’s function. Let us determine, for 7 — 8 > 0,

G(ki ™~ ) =~ Tr [ax(r — B)a}(0) (6.67)

6.5 Matsubara frequencies



