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11 Conformal Symmetry and Conformal Field

11.1 Conformal group and algebra

A conformal transformation of space-time coordinate on M?* is defined as
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Where Q(z) is conformal factor and it is determined from infinitesimal trans-
formation as
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with d = 4 = dim(M?*). These become constrain conditions of the conformal
transformation (15.2).
The generic form of e*(z) is

(x) = a' + "z, + Mz, (11.9)

The first term is known as translation, the second term is known as dilation
and rotation, while the third term is known as special conformal transfor-
mation.



11.1.1 Translation

When e¢* = a* is a constant translation, we observe nothing from (15.7)
that 0 = 0. But we already know that the generator of translation is the
momentum operator

P, =i, (11.10)

11.1.2 Dilation and rotation

When e = b*z,,, we can observe from (15.7) that
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decompose

by = G + by (11.12)

where « is dilation factor and I;[W} is the anti-symmetric tensor for rotations.
Note that dilation is generated by Dilation operator D, while rotation is
generated by angular momentum tensor My, .

11.1.3 Special conformal transformation

When e = ¢*?z,x,, we can observe from (15.7) as
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11.2 Conformal symmetry of fields
11.3 Conformal field theory



