
8 Gravitational Field

8.1 General theory of relativity

8.1.1 Equivalence principle

According to the fact that
”all observer cannot observe gravity from any inertial frame”

This made Einstein to though about equivalence between non-inertial (ac-
celerating) frame on flat space to the inertial frame in curved space Since

Figure 8.1: Einstein’s equivalence principle.

light do not feel gravity and it travels along geometry of spacetime. We
can observe light path in equivalence accelerating frame, without gravity,
that the spacetime is curved. This principle makes us to study gravity from
geometry of spacetime.

8.2 Geometry of curved spacetime

Let M be any 4-dimensional curved spacetime manifold equipped with met-
ric tensor gµν(x) at any point P, with coordinate patch xµ on tangent man-
ifold TMP .

Figure 8.2: Coordinate patch of M on TMP .
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8.2.1 Geodesic equation and the connection

The geometry of M is determined from geodesic path trace on M from a to
b, with path length

τ =

∫ b

a
ds =

∫ b

a

√
gµν(x)dxµdxν ≡

∫ b

a

√
gµν(x)

dxµ

dτ

dxν

dτ
dτ (8.1)

After we have parametrized the geodesic path with its path length τ . The
shortest path can be determined from calculus of variation. Let

L = L(x, x′) =

√
gµν

dxµ

dτ

dxν

dτ
, x′µ =

dxµ

dτ
(8.2)

δτ = 0 =

∫ b

a

(
∂L

dxµ
δxµ +

∂L

∂x′µ
δx′µ

)
dτ

=

∫ b

a
dτ

(
∂L

dxµ
− d

dτ

∂L

∂x′µ

)
δxµdτ +

∫ b

a
d

(
∂L

∂x′µ
δxµ
)
(8.3)

The last term is assumed to be zero at boundary, thus we get the Euler-
Lagrange equation of geodesic path in the form

∂L

∂xµ
− d

dτ

∂L

∂x′µ
= 0 (8.4)

Let L =
√
F 6= F (τ) 7→ ∂F

∂xµ
− d

dτ

∂F

∂x′µ
= 0 (8.5)

With F (x, x′) = gµν(x)x′µx′ν , let us determine

∂F

∂xρ
= gµν,ρx

′µx′ν , gµν,ρ =
dgµν(x)

dxρ
(8.6)

∂F

∂x′ρ
= gρνx

′ν + gµρx
′µ (8.7)

7→ d

dτ

∂F

∂x′ρ
= gρν,µx

′µx′ν + gµρ,νx
′µx′ν + 2gρµx

′′µ (8.8)

From Euler-Lagrange equation, we have

2gρµx
′′µ + (gρν,µ + gµρ,ν − gµν,ρ)x′µx′ν = 0 (8.9)

7→ x′′σ +
1

2
gσρ (gρν,µ + gµρ,ν − gµν,ρ)x′µx′ν = 0 (8.10)

We can define the Christoffel symbols of the connection as

Γσµν =
1

2
gσρ (gρν,µ + gµρ,ν − gµν,ρ) (8.11)

(8.10) 7→ x′′σ + Γσµνx
′µx′ν = 0 (8.12)
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It is called geodesic equation of the geodesic path on M .

8.2.2 Parallel transport

Thecovariant derivative of any vector V β defined on M is defined the form

∇αV β = ∂αV
β + ΓβγαV

γ (8.13)

and ∇αVβ = ∂αVβ − ΓγβαVγ (8.14)

It measures the change of V β with it is traced along any geodesic path on
M .

Figure 8.3: Change of any vector when parallel transported along geodesic
path on M .

8.2.3 Riemann curvature tensor

The curvature of M can be measured by doing a parallel transport of any
vector along a closed geodesic path An Riemann curvature tensor is defined
in the form

[∇µ,∇ν ]V α = RαβµνV
β (8.15)
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Figure 8.4: Parallel transport of a vector along a closed geodesic path on
M .

Let us determine

[∇µ,∇ν ]V α = ∇µ∇νV α −∇ν∇µV α (8.16)

∇µ∇νV α = ∇µ
(
∂νV

α + ΓαγνV
γ
)

(8.17)

= ∂µ∂νV
α + Γαγν,µV

γ + Γαγν∂µV
γ

+Γαγµ∂νV
γ + ΓαδµΓδγνV

γ (8.18)

∇ν∇µV α = ∂ν∂µV
α + Γαγµ,νV

γ + Γαγµ∂νV
γ

+Γαγν∂µV
γ + ΓαδνΓδγµV

γ (8.19)

(8.16) 7→ [∇µ,∇ν ]V α =
(

Γαγν,µ − Γαγµ,ν + ΓαδµΓδγν − ΓαδνΓδγµ

)
V γ

(8.20)

Then we have an expression of Riemann curvature tensor in the form

Rαγµν = Γαγν,µ − Γαγµ,ν + ΓαδµΓδγν − ΓαδνΓδγµ (8.21)

Basic properties of Riemann curvature tensor are

• Rαγµν = Rµναγ

• Rαγµν = −Rγαµν = −Rαγνµ

• Rαγµν +Rαµνγ +Rανγµ = 0

• ∇βRαγµν +∇αRγβµν +∇γRβαµν = 0 (Bianchi’s identity)

8.3 Einstein equation

The Ricci tensor is defined from the contraction as

Rµν = Rαµαν = gαβRαµβν (8.22)
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And Ricci scalar is defined by another contraction

R = gµνRµν (8.23)

Einstein tensor is then defined from Ricci tensor and Ricci scalar in the form

Eµν = Rµν −
1

2
gµνR (8.24)

And Einstein wrote his equation of gravity, according to equivalence princi-
ple, in the form

Eµν = κTµν (8.25)

where κ is Einstein’s proportional constant and Tµν is stress-energy tensor
of matter field. When contraction both side with metric tensor, we will have

gµνEµν = R− 1

2
δµµR = −R = κT (8.26)

(8.24) 7→ Rµν = κ

(
Tµν −

1

2
gµνT

)
(8.27)

In free space, we will have Einstein’s equation in the form

Rµν = 0 (8.28)

8.3.1 Newtonian limit

From geodesic equation (8.12), in low energy limit only the temporal com-
ponent of velocity x′µ ∼ (u0, 0, 0, 0) is dominate, then we will have

x′′µ + Γµ00u
0u0 = 0 and Γµ00 ∼ −

1

2
gµν∂νg00 (8.29)

Let us assume weak gravity as gµν ∼ ηµν − hµν , so that

Γµ00 ∼
1

2
gµν∂νh00 7→ x′′µ ∼ 1

2
gµν∂νh00 =

1

2
ηij∂jh00 = −∂ih00 (8.30)

Note that

T00 = ρ = T
(8.27)−−−→ R00 =

1

2
κρ (8.31)

Since R00 ∼ ∂iΓi00 = −1

2
∂i∂

ih00 = ∇2Φ, Φ =
1

2
h00 (8.32)

7→ ∇2Φ =
1

2
κρ ≡ 4πGρ (8.33)

where G is Newton’s gravitational constant. Then we have

κ = 8πG→ 8π

c4
G (8.34)
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8.4 Einstein-Hilbert action

Einstein’s equation(8.27), with matter coupled gravity, can be derived from
least action principle. We start from Einstein-Hilbert action in the form

S =

∫
d4x
√
−g
(

1

2κ
R+ Lmatter

)
≡ SEH + SM (8.35)

Note that
√
−gd4 is diffeomorphism invariant integral measure on M , i.e.,

d4x′ =

∣∣∣∣dx′dx
∣∣∣∣ d4x, and gµν(x′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x)

7→ g′ =

∣∣∣∣ dxdx′
∣∣∣∣ ∣∣∣∣ dxdx′

∣∣∣∣ g, and
√
−g′ =

∣∣∣∣ dxdx′
∣∣∣∣√−g

7→
√
−g′d4x′ =

√
−gd4x

Apply with least action principle

∆S = δSEH + δSM = 0 (8.36)

where

δSEH =
1

2κ

∫
d4x

(
δ(
√
−g)R+

√
−gδR

)
(8.37)

δ
√
−g = − 1

2
√
−g

δg = − 1

2
√
−g

dg

dgαβ
δgαβ (8.38)

Since

gαβ = (gαβ)−1 =
1

g
(Gαβ)T =

1

g
Gβα, Gαβ = co− factor of gαβ

7→ g = gαβG
βα

Then we have from above

δ
√
−g = − 1

2
√
−g

Gβαδgαβ =
1

2

√
−ggαβδgαβ = −1

2

√
−ggαβδgαβ (8.39)

R = gαβRαβ 7→ δR = Rαβδg
αβ + gµνδRµν (8.40)

From (8.21)

δRαγµν = δΓαγν,µ − δΓαγµ,ν + δΓαδµΓδγν + ΓαδµδΓ
δ
γν − δΓαδνΓδγµ − ΓαδνδΓ

δ
γµ

6



≡ ∇µΓαγν −∇νΓαγµ

7→ δRαµαν = ∇αΓαµν −∇αΓανµ = 0

Then we have from above

δR = Rαβδg
αβ (8.41)

7→ δSEH =
1

2κ

∫
d4x
√
−g
(
Rαβ −

1

2
gαβR

)
δgαβ (8.42)

δSM =

∫
d4xδ

(√
−gLmatter

)
= −1

2

∫
d4
√
−gTαβδgαβ (8.43)

where Tαβ = − 2√
−g

∂
√
−gLmatter
∂gαβ

(8.44)

From (8.36), we can derive the Einstein’s equation in the form

δS = 0 =
1

2κ

∫
d4x
√
−g
(
Rαβ −

1

2
gαβR− κTαβ

)
δgαβ (8.45)

7→ Rαβ −
1

2
gαβR = κTαβ (8.46)

8.5 Schwarzschild static solution

Trial static solution of Einstein equation in free isotropic space is proposed
by Schwarzschild in the form

ds2 = U(r)(dt)2 − V (r)(dr)2 − r2(dθ)2 − r2 sin2 θ(dφ)2 (8.47)

This corresponds to the metric tensor

7→ g00 = U(r), g11 = −V (r), g22 = −r2, g33 = −r2 sin2 θ (8.48)

g00 =
1

U(r)
, g11 = − 1

V (r)
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
(8.49)

Use these information to calculate the connection and then Riemann cur-
vature tensor, Ricci tensor and Ricci scalar. After insertion into Eintein
equation (8.28), we can solve form U(r) and V (r), and we can find that

U(r) = 1− C

r
, V (r) =

1

1− C
r

(8.50)

From dimensional analysis, we can assign the value of constant of integration
C = 2GM

r , in natural unit. From (8.47) we will have

ds2 =

(
1− 2GM

r

)
dt2 − dr2

1− 2GM
r

− r2dθ2 − r2 sin2 θdφ2 (8.51)
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This solution shows us two singular points in radial direction, at r = 0 and
at r = r0 = 2GM . The geometry changes from regular spacetime at r > r0
to non-regular spacetime at 0 < r < r0. The non-regular spacetime is said
to be inside the balck hole, where r = r0 is its event horizon. It is called
Schwarzschild radius. So that any physical object cannot pass through the
event horizon, event the light, and vice versa.

Figure 8.5: Schwarzschild black hole.

8.6 Linearized gravity

In the weak gravitational field we can assume the linearized gravity as

gµν(x) ' ηµν + hµν(x) (8.52)

where ηµν is the flat Minkowski metric tensor. With this assumption we can
calculate the connection, up to the first order of hµν(x), in the form

Γαµν '
1

2
ηαβ (hβν,µ + hβµ,ν − hµν,β) (8.53)

And the Riemann curvature tensor is calculated up to the first order in
hµν(x) in the form

Rαρµν ' Γαρν,µ − Γαρµ,ν =
1

2
ηαβ (hβν,ρµ + hβρ,νµ − hρν,βµ
−hβµ,ρν − hβρ,µν + hρµ,βν)

=
1

2
ηαβ (hβν,ρµ + hρµ,βν − hρν,βµ − hβµ,ρν) (8.54)

7→ Rµν '
1

2
ηαβ (hβν,µα + hµα,βν − hµν,βα − hβα,µν)

=
1

2

(
∂µ∂αh

α
ν + ∂ν∂αh

α
µ − ∂2hµν − ∂µ∂νh

)
(8.55)

8



We can assign a condition

∂αh
α
µ −

1

2
∂µh = 0 (8.56)

It is called harmonic gauge, then we have from above (8.55) and Einstein
equation in free space (8.28)

∂2hµν(x) = 0 (8.57)

8.6.1 Gravitational wave solution

A trial plane wave solution of (8.57) is

hµν(x) ∼ εµν(k, λ)a(k, λ)e−ik·x 7→ −k2εµν(kλ)a(k, λ) = 0 (8.58)

k2 = ω2 − |~k|2 = 0 7→ ω2 − ω2
k = 0, ωk = |~k| (8.59)

Its general solution is

hµν(x) =

∫
d3k

(2π)3

∫
dω

2π

∑
λ

εµν(k, λ)
(
a(k, λ)e−ik·x + c.c.

)
×(2π)δ(ω2 − ω2

k)θ(ω) (8.60)

=

∫
d3k

(2π)32ωk

∑
λ

εµν(k, λ)
(
a(k, λ)e−ik·x + c.c.

)
ω=ωk

(8.61)

Since gravitational wave travels at light speed. And according to the har-
monic gauge condition the polarization tensor must be symmetric, transver-
sal and traceless. Let kµ = (ωk, 0, 0, k), then we should have it in the form

εµν =


0 0 0 0
0 ε11 ε12 0
0 ε12 −ε11 0
0 0 0 0

 (8.62)
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