8 Gravitational Field

8.1 General theory of relativity
8.1.1 Equivalence principle

According to the fact that

7 all observer cannot observe gravity from any inertial frame’
This made Einstein to though about equivalence between non-inertial (ac-
celerating) frame on flat space to the inertial frame in curved space Since

Figure 8.1: Einstein’s equivalence principle.

light do not feel gravity and it travels along geometry of spacetime. We
can observe light path in equivalence accelerating frame, without gravity,
that the spacetime is curved. This principle makes us to study gravity from
geometry of spacetime.

8.2 Geometry of curved spacetime

Let M be any 4-dimensional curved spacetime manifold equipped with met-
ric tensor g, () at any point P, with coordinate patch z* on tangent man-
ifold TMp.

coordinate
curves

Figure 8.2: Coordinate patch of M on T'Mp.



8.2.1 Geodesic equation and the connection

The geometry of M is determined from geodesic path trace on M from a to
b, with path length

b b b
dxt dzv
T:/ ds:/ \/gw,(x)dxﬂdx’/z/ gw,(x)% de dr (8.1)

After we have parametrized the geodesic path with its path length 7. The
shortest path can be determined from calculus of variation. Let
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The last term is assumed to be zero at boundary, thus we get the Euler-
Lagrange equation of geodesic path in the form
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Let L=VF #F(1)—~» — — — =0 8.5
¢ VE# (7) Ox#  drt Ox'M (8:5)
With F(z,2") = g, (x)z™ 2", let us determine
OF g ()
@ = gMV7px/ux/l/7 gul/,p = C/Z,Ep (8.6)
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ke g + gupr™ (8.7)
d OF
dr oz'p Ioo® 3" + gupa " + 2gp (88)
From Euler-Lagrange equation, we have
Qqux//# + (gPV7M + gup71/ - guy7p) l‘/‘uxllj = 0 (8.9)
1
N .’E//U + 7gUP (prt + upw — gu%p) ;p/ﬂz/V = (810)
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We can define the Christoffel symbols of the connection as

1
FZ,V = igap (gpl/,u + Gupy — guu,p) (8.11)
(8.10) = 2”7 4+ T7, 22" =0 (8.12)
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It is called geodesic equation of the geodesic path on M.

8.2.2 Parallel transport
Thecovariant derivative of any vector V7 defined on M is defined the form

VoVP =0,V + T8, V7 (8.13)
and VoV = 0V — I}, V4 (8.14)

It measures the change of V# with it is traced along any geodesic path on
M.

Figure 8.3: Change of any vector when parallel transported along geodesic
path on M.

8.2.3 Riemann curvature tensor

The curvature of M can be measured by doing a parallel transport of any
vector along a closed geodesic path An Riemann curvature tensor is defined
in the form

V., V,JVY = R, VP (8.15)
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Figure 8.4: Parallel transport of a vector along a closed geodesic path on
M.

Let us determine

[V, VIV = V,V,V* -V, Vv,V (8.16)
V.V, Ve = V, (0, V*+T5, V) (8.17)
= 9.0,V +T2, VI +T%,0,V"
+T19,0,V7 + T, V7 (8.18)
V V. Ve = 0,0,V +T2, VI +T2,0,V"
+T2,0,V7 + 18,19, V7 (8.19)
o o o a 1o a 7o
(8.16) = [V, VIV = (19, =5, + T5.0, ~T5,15,) V"

(8.20)
Then we have an expression of Riemann curvature tensor in the form
é 0
Ry = 50 = Do + 5,15, — T5, 15, (8.21)
Basic properties of Riemann curvature tensor are

® Royuw = Ruvay

4 Roe'yuu = _Rvauy = _Ra'yyu
® Royuw + Roywy + Ry = 0
o ViRoyuw + VaRygu + VyRgau = 0 (Bianchi’s identity)

8.3 Einstein equation

The Ricci tensor is defined from the contraction as

Ry = Ry, = 9" Rapsy (8.22)
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And Ricci scalar is defined by another contraction

R=g¢""R,, (8.23)

Einstein tensor is then defined from Ricci tensor and Ricci scalar in the form
1

E. =Ry — §£7/WR (8.24)

And Einstein wrote his equation of gravity, according to equivalence princi-
ple, in the form

By = KT, (8.25)

where « is Einstein’s proportional constant and 7}, is stress-energy tensor
of matter field. When contraction both side with metric tensor, we will have

Y 1
g""E, =R— 555}% =—-R=kT (8.26)
1
(8.24) = R,y =k <TW — 2gWT> (8.27)
In free space, we will have Einstein’s equation in the form
R,, =0 (8.28)

8.3.1 Newtonian limit

From geodesic equation (8.12), in low energy limit only the temporal com-
ponent of velocity 2™ ~ (u°,0,0,0) is dominate, then we will have

1
2" + Thu'u® = 0 and Tl ~ —ig’“’ayggo (8.29)
Let us assume weak gravity as g"” ~ n,, — Iy, so that

1 1 1 .. )
FSO ~ 59’“/51/%0 ™~ ig’wauhoo = inzjajhoo = —0"po (8.30)

Note that
Too=p=T 22 Ry = %/@p (8.31)
Since Rog ~ 0;Thy = —%&«aihog =V, &= %hoo (8.32)
= V20 = %/@p = 47Gp (8.33)
where G is Newton’s gravitational constant. Then we have
k= 8rG — i—ZG (8.34)



8.4 Einstein-Hilbert action

Einstein’s equation(8.27), with matter coupled gravity, can be derived from
least action principle. We start from Einstein-Hilbert action in the form

S = /d4x\/ —g <21:‘£R+ Ematter) = Sen +Su (835)

Note that \/—gd* is diffeomorphism invariant integral measure on M, i.e.,

dz’ dx® 9z
d*s = ‘dm d*z, and g, (') = D Wﬂaﬁ(x)
dz
=g = || | 7| 9 and F‘ T

> \/—g’d4 ' = Jjgd4x

Apply with least action principle

AS = 6Spy +6Sy =0 (8.36)
where
6Spy = — / d*z (6(v/=g)R + v/—géR) (8.37)
Vg = ——bg = 9 54 (8.38)
2F 2W dgap
Since

1 1
9% = (gap) ' = ~(G*P)T = =GP, G*P = co — factor of gag
g g

= g = gapG™*

Then we have from above

1 1
- - ,Boz _ = S af e af
dv 2\/761 ga,@ =95 vV —99 5gaﬂ Ty V ggaﬁdg (8'39)

R=g*°Rag — 6R = Rapdg™ + g"0R,, (8.40)
From (8.21)

SRy = 012, , — 0T%, , + 678,19, + 14,00, — 6T§, I, —T4,0T7,



=V, I3, —V,I2,
= 6R® yar = Vo', — VoIS, = 0

Then we have from above

OR = Ru36g™” (8.41)
1 1
— 0Spy = o /d4x\/—g (Raﬁ - 29a5R> 598 (8.42)
1
38 = [ @28 (V=GLmaier) =~ [ dVTGTasbg™ (8.3
where Tpg = — 2 9v=9Lmatter (8.44)

V=g  0g9°"

From (8.36), we can derive the Einstein’s equation in the form
1 1
0S=0= 2/d4x\/—g <Ra5 - §ga5R - KTa,B) 5™ (8.45)
K

1
— Rag - §ga/3R = I{Taﬂ (8.46)

8.5 Schwarzschild static solution

Trial static solution of Einstein equation in free isotropic space is proposed
by Schwarzschild in the form

ds®> = U(r)(dt)? — V(r)(dr)? — r*(df)* — r* sin® (d¢)* (8.47)
This corresponds to the metric tensor

= goo = U(r), 911 = =V (r), 922 = —1r?%, g33 = —r°sin’ @ (8.48)
U T vey T T T e
Use these information to calculate the connection and then Riemann cur-
vature tensor, Ricci tensor and Ricci scalar. After insertion into Eintein
equation (8.28), we can solve form U(r) and V(r), and we can find that

Ur)y=1- %, Vir) = ! (8.50)

From dimensional analysis, we can assign the value of constant of integration

C= Q(iM, in natural unit. From (8.47) we will have

— 2GM
T

2GM 2
ds® = <1 - G) dt? — 1d’” —r2df? — r? sin? 0dg? (8.51)
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This solution shows us two singular points in radial direction, at r = 0 and
at r = rg = 2GM. The geometry changes from regular spacetime at r > rg
to non-regular spacetime at 0 < r < rg. The non-regular spacetime is said
to be inside the balck hole, where r = rq is its event horizon. It is called
Schwarzschild radius. So that any physical object cannot pass through the
event horizon, event the light, and vice versa.

Schwarzschild
radius

singularity at r=0

event horizon

Figure 8.5: Schwarzschild black hole.

8.6 Linearized gravity
In the weak gravitational field we can assume the linearized gravity as
G (®) = My + s (2) (8.52)

where 7, is the flat Minkowski metric tensor. With this assumption we can
calculate the connection, up to the first order of h,,(z), in the form

« 1 (e
D = 5n ? (hgv + hguw — hywp) (8.53)

And the Riemann curvature tensor is calculated up to the first order in
huv(x) in the form

1
Ry =15, =T = 577&6 (hvon + Pgpwp — Pov,gu

_hﬁu,pv - hﬁp,/w + hpuﬂl/)

1 (0%
- 577 ’ (hgu,pu + o8 — Ppv,pu — hap,pv) (8.54)
1 (e}
= Ry~ PY ’ (hgu,pa + hua,By — hyw,Ba — Mga,uw)
1
=5 (8u8ahf,“ + 8,,8ahfj - 82h,w - 8,L8,,h) (8.55)



We can assign a condition
6 1 .
Oahy, — iauh =0 (8.56)

It is called harmonic gauge, then we have from above (8.55) and Einstein
equation in free space (8.28)

O?hyw () =0 (8.57)
8.6.1 Gravitational wave solution
A trial plane wave solution of (8.57) is

By () ~ € (b, Na(k, N)e % s —k2e,, (kX)a(k,\) = 0 (8.58)
B =w?— k=0 w?—w] =0,wy, = |k| (8.59)

Its general solution is

hy () = / (;‘i’;”g / Z—:Zew(k, ) (a(k, A)e*ik-uc.c.)
A

x (2m)8(w? — wi)f(w) (8.60)
3
~ [ G 2 el (ak e ) (3.61)
A

wW=wp

Since gravitational wave travels at light speed. And according to the har-
monic gauge condition the polarization tensor must be symmetric, transver-
sal and traceless. Let k* = (wg, 0,0, k), then we should have it in the form

0 O 0 0
o 0 €11 €12 0

€uy = 0 ep —eq 0 (862)
0 0 0 0



