SCPY523 Classical Field Theory

1 Classical Dynamics of Particle and Contin-
uum

1.1 Dynamics of a point particle

Let {q} be a set of degree of freedom of a particle, its dynamics is determined
from the Lagrangian, using least action principle, as
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The conjugate momentum p is derived from the Lagrangian as
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The particle Hamiltonian is derived from Legendre transformation of the La-
grangian as
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Define Poisson’s bracket

A= A(g,p), B=(B(q,p) — {aA 05 04 aB}
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We will observe that
¢={q,H}, p={p, H}, and {q,p} =1 symplec structure of phase space

and (g, p) is called canonical coordinates of phase space. Note that H = H(q,p)
will form to be closed curve on phase space for closed system (constant energy).
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1.2 Dynamics of a continuum

Let us determine a linear spring chain of N-mass points m connected with spring
k of length a. Its longitudinal dynamics is determined from the Lagrangian
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EoM of the i*"-mass point, after using Euler-Lagrange equation is
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Apply the continuity approximation
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After we have used the notations
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The EoM will appear in the form
pii— k0" =0
which can derive from the Euler-Lagrange equation of the form
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The linear spring chain becomes an elastic rod, with longitudinal vibration.
For an anisotropic elastic body in three-dimension, with displacement vector

7= (m1,M2,m3), we will have
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Its EoM is derived from Euler-Lagrange equation
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The conjugate momentum and Hamiltonian is derived as
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In case of Lorentz covariant field F(z),i.e. Lorentz representative fields, we
will have
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1.3 Continuous symmetry and Noether’s theorem

The theorem state that:
7 an invariant (of the action) under any continuous transformation will cor-
respond with conserve quantity”’

1.3.1 Point particle symmetry

For generic Lagrangian L = L(q,q), let ¢ = ¢’ = q + dq., an invariant action
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J is the conserve quantity and known in the name of Noether’s current. For
example of free particle with translation symmetry
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1.3.2 Continuous system symmetry

For continuous system, let us determine Lorentz covariant field. In case of
generic field F(z) with Lagrangian density £(F,,F). Let

r—=2 =x+4+06x, and F - F' =F+§F

where 6. F = 0. F + dcxt O, F
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are symmetry transformations of the continuous system. Note that 0. F is the
local change of field. Then we have
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Let us determine x — 2’ = = + 6.z, so that
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For the field transformation F' — F" = F + §.F, we will have
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It is the conserved Noether’s current.
In case of translation transformation of translation symmetric field, we have
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It is called energy-momentum tensor.
In case of Lorentz transformation of Lorentz covariant field, we have
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F(x) = F'(2') = D(A)F(z) ~ D(1 + w)F(z) =1 - F(x) + %wE - F(x)
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a 1 1% a
— 0. F%(x) = iw" E#?,Fb
where I = I is identity matrix. So that
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M*,, =TV, x, — TH,x, (angular momentum tensor)
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St = % Fb (spin — angular momentum tensor)



