
SCPY523 Classical Field Theory

2 Classical Dynamics of Scalar Fields

We will study classical dynamics of Klein-Gordon scalar field.

2.1 Klein-Gordon equation

Quantum dynamics can be determined from canonical quantization of classical
system by promoting set of canonical variables (q, p), satisfy Poisson bracket
{q, p} = 1, to be set of canonical operator (q̂, p̂) satisfy algebra (commutation
relation) [q̂, p̂] = i. These operators have their own eigen-value equations

q̂|q〉 = q|q〉, p̂|p〉 = p|p〉

And their alternative applications are

q̂|p〉 = i∂p|p〉, p̂|q〉 = −i∂q|q〉 7→ 〈q|p〉 =
1√
2π
eipq

The system Hamiltonian H = H(q, p) is also promoted to be an operator and
has its own eigen-value equation

Ĥ|ψE〉 = E|ψE〉

which is known in the name of Schrodinger’s equation. For non-relativistic
equation we have

H =
p2

2m
+ V (q) 7→ Ĥ =

p̂2

2m
+ V (q̂)

7→
(
p̂2

2m
+ V (q̂)

)
|ψE〉 = E|ψE〉

〈q|
(
p̂2

2m
+ V (q̂)

)
|ψE〉 = 〈q|E|ψE〉 7→

(
− 1

2m
∂2q + V (q)

)
ψe(q) = EψE(q)

when ψE(q) = 〈q|ψE〉. For relativistic particle, with relativistic energy-momentum
relation

E2 = p2 +m2 7→ E2 − p2 −m2 = 0

Under canonical quantization, together with promoting an energy E to be an
energy operator Ê = i∂t when viewd from time-dependent state |φ(t)〉, we will
have an operator equation

(Ê2 − p̂2 −m2)|φ(t)〉 = 0 7→ −(∂2t − ∂2q +m2)φ(t, q) = 0

when φ(t, q) = 〈q|φ(t)〉. In Lorentz covariant form (t, q) = xµ and ∂2t − ∂2q =
∂µ∂

µ = ∂2 is d’Alembertian which is Lorentz scalar. So that this equation
can be Lorentz invariant when φ(x) is simply Lorentz scalar function. Then
this equation become to know in the name of Klein-Gordon equation. To be
quantum equation, the function φ(x) must be interpreted as probability density
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function, satisfy conserved probability condition. In case of complex scalar field,
we have φ∗ 6= φ satisfy the same equation, and the probability current density
is determined as

φ∗(∂2 +m2)φ = 0
subtraction with−−−−−−−−−−−→
its conjugation

φ∗∂2φ− φ∂2φ∗ = 0

7→ ∂µ(φ∗∂µφ− φ∂µφ∗) ≡ ∂µjµ = 0 continuity equation

jµφ∗∂µφ− φ∂µφ∗ = (φ∗∂0φ− φ∂0φ∗,−(φ∗∇φ− φ∇φ∗)) ≡ (j0,~j)

Note that j0 = φ∗∂0φ−φ∂0φ∗ is not positive definite so that it cannot be inter-
preted as probability density. This is the fail point of Klein-Gordon equation for
using as relativistic quantum equation. Another problem of Klein-Gordon equa-
tion is the negative energy part of quantum particle, since E = ±

√
p2 +m2,

in which Klein-Gordon cannot discuss this point in their time of writing their
equation.

2.2 Classical aspects of scalar field

Reinterpretation of Klein-Gordon equation appear later as classical Lorentz
scalar field equation, not a relativistic quantum equation any more. In case
of real scalar field φ = φ∗, Klein-Gordon equation can be derived from the
Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2

From Euler-Lagrange equation

∂L
∂φ
− ∂µ

∂L
∂∂µφ

= 0 7→ ∂L
∂φ

= −m2φ,
∂L
∂µφ

= ∂µφ 7→ −(∂2φ+m2φ) = 0

Its Hamiltonian is

π =
∂L
∂∂0φ

= ∂0φ 7→ H = φ∂0φ− L =
1

2
π2 +

1

2
∇φ · ∇φ+

1

2
m2φ2

Free field solution is determined from trial solution

φ(x) ∼ a(k)e−ik·x 7→ (−k2 +m2)a(k) = 0

7→ −k2 +m2 = −ω2 + ~k2 +m2 = 0 7→ ω2 = ω2
k, ωk =

√
~k2 +m2

after using notation of the 4-momentum kµ = (ω,~k). The general solution is
written in the form of Fourier transformation

φ(x) =

∫
d3k

(2π)3

∫
dω

2π

(
a(k)e−ikx + a∗(k)eikx

)
(2π)δ(ω2 − ω2

k)

Using identity of the delta function

δ(f(x)) =
∑
i

f(ai)

|f ′(ai)|
, f(ai) = 0 for all i
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δ(ω2 − ω2
k) =

1

2ωk
[δ(ω − ωk) + δ(ω + ωk)]

The we have from above

φ(x) =

∫
d3k

(2π)32ωk

(
a(k)e−ikx + a∗(k)eikx

)
ω=ωk

We also have

π = ∂0φ = − i
2

∫
d3k

(2π)3
(
a(k)e−ikx − a∗(k)eikx

)
ω=ωk

∇φ(x) = i

∫
d3k

(2π)32ωk
~k
(
a(k)e−ikx − a∗(k)eikx

)
ω=ωk

The expression of amplitude a(k) can be derived from the inverse Fourier trans-
formation as

a(k) = i

∫
d3xeikx(∂0φ(x)− iωkφ(x)) ≡ i

∫
d3xeikx

←→
∂ 0φ(x)

7→ a∗(k) = −i
∫
d3xe−ikx

←→
∂ 0φ(x), when φ∗ = φ

after we have used the notation f(x)
←→
∂ 0g(x) = f(x)

−→
∂ 0g(x)− f(x)

←−
∂ 0g(x).

From complex scalar field φ 6= φ∗, we have field Lagrangian in the form

L = ∂µφ
∗∂µφ−m2φ∗φ

The conjugate momentum field is

π =
∂L
∂∂0φ

= ∂0φ
∗ 7→ π∗ = ∂0φ

and the field Hamiltonian is

H = π∂0φ+ π∗∂0φ
∗ − L = π∗π +∇φ∗ · ∇φ+m2φ∗φ

The general free field solution will appear in the form

φ(x) =

∫
d3k

(2π)32ωk

(
a(k)e−ikx + b∗(k)eikx

)
ω=ωk

And the amplitudes a(k) and b(k) are derived as above. On the other hand
the complex scalar field can be written in term of two real scalar fields as
φ(x) = φ1(x) + iφ2(x) 7→ φ∗(x) = φ1(x)− iφ2(x) 6= φ(x).
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2.3 Conserved Noether’s current

2.3.1 Energy-momentum tensor

Lorentz symmetry of the scalar field results to the conserved energy-momentum
tensor and the angular momentum tensor of the form, in case of complex scalar
field,

Tµν =
∂L
∂∂µφ

∂νφ+
∂L

∂∂µφ∗
∂νφ

∗ − δµνL = ∂µφ∗∂νφ− δµνL

Q =

∫
d3xT 00 =

∫
d3x(π∗π +∇φ∗ · ∇φ+m2φ∗φ) =

∫
d3xH

P i =

∫
d3xT 0i =

∫
d3x(∂0φ∗∂iφ+ ∂0φ∂iφ∗)

These are the conserved Noether’s charge Q (Hamiltonian H) and Noether’s
current J i (momentum P i).

2.3.2 Angular momentum tensor

The angular momentum tensor is

Mµ
νσ = Tµνxσ − Tµσxν 7→ Lij = M0

ij =

∫
d3x

(
T 0

ixj − T 0
jxi
)

More analysis can be done on quantum level.

2.3.3 Spin angular momentum tensor

Since φ′(x′) = D(Λ)φ(x) = φ(x) 7→ D(Λ) = 1 for scalar fields, so that

Sµνσ = 0

This shows that the scalar fields have spin s = 0.

2.4 Self-interaction, ground state configuration and spon-
taneous symmetry breaking

2.4.1 Z2-symmetry

In φ4-self interaction model of the real scalar field, its Lagrangian appear in the
form

L =
1

2
∂µφ∂

µφ− 1

2
µ2φ2 − 1

4
gφ4

→ V(φ) =
1

2
µ2φ2 +

1

4
gφ4

This model has discrete Z2-symmetry, i.e., φ→ −φ. The ground state of system
is determined from the minimum of potential V(φ = φ0). We observe that

V ′(φ0) = 0 = µ2φ0 + gφ30 = φ0(µ2 + gφ20)
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Figure 2.1: φ4- potential.

µ2 > 0 7→ φ0 = 0, and µ2 < 0 7→ φ±0 = ±
√
|µ2|/g

In case of µ2 > 0, there is only one symmetric ground state configuration
φ0 = 0, so there will be no symmetry breaking. But for µ2 < 0, there are
Z2-symmetric ground state configurations φ0 = ±

√
|µ|2/g. The system must

choose one of these result to the breaking of this symmetry, and this results
to what is called spontaneous symmetry breaking. Let us choose one at φ0 =
+
√
|µ|2/g, the field dynamics around this configuration can be determined from

its fluctuation of the ground state as

φ(x) ' φ0 + η(x)

Insertion into the field Lagrangian we will have

∂µφ = ∂µη, φ
2 = (φ0 + η2) = φ20 + 2φ0η + η2 =

|µ|2

g
+ 2

√
|µ|2
g
η + η2

φ4 = φ40 + 4φ30η + 6φ20η
2 + 4φ0η

3 + η4

=
|µ|4

g2
+ 4
|µ|3

g
√
g
η + 6

|µ|2

g
η2 + 4

√
|µ|2
g
η3 + η4

Then the field Lagrangian after symmetry breaking will become

L = − 1

4g
|µ|4 +

1

2
∂µη∂

µη − |µ|2η2 −
√
g|µ|2η3 − 1

4
gη4

The new system emerge with some ground state energy, differ in mass and extra
cubic interaction.

2.4.2 SO(2)-symmetry

Let us determine complex scalar field φ = φ1 + iφ2 with quartic interaction, its
Lagrangian appear in the form

L = ∂µφ
∗∂µφ− µ2φ∗φ− g(φ∗φ)2
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Figure 2.2: Ground state configuration of (φ∗φ)2-interaction.

The ground state configuration appear as before but in two-dimensions.
In case of µ2 > 0, we see that

φ∗0φ0 = φ201 + φ202 = 0 7→ φ01 = 0 = φ02

There are the symmetric ground state configurations. There will be no symme-
try breaking. But in case of µ2 < 0, we see that

φ∗0φ0 = φ201 + φ202 =
|µ|2

2g

We observe that φ01, φ02 contribute to SO(2)-symmetric ground state config-
urations. There will be symmetry breaking. Let us break this symmetry by
choosing the broken symmetry ground state configuration at

φ01 = 0, φ02 = a = +
√
|µ|2/2g, 7→ φ1(x) ' η1(x), φ2(x) ' a+ η2(x)

∂µφ
∗∂µφ = ∂µη1∂

µη1 + ∂µη2∂
µη2

φ∗φ = φ21 + φ22 = η21 + (a+ η2)2 = η21 + a2 + 2aη2 + η22

(φ∗φ)2 = η41 + a4 + 2a2η21 + 4aη21η2 + 2η21η
2
2 + 6a2η22 + η42 + 4a3η2 + 4aη32

From the Lagrangian above we will have

L = ∂µη1∂
µη1 + ∂µη2∂

µη2 + |µ|2η21 + |µ|2η22 + |µ|2a2 + 2|µ|2aη2

−gη41 − ga4 − 2ga2η21 − 4gaη21η2 − 2gη21η
2
2 − 6ga2η22 − gη42 − 4ga3η2 − 4aη32

After insertion the value of s, we get important terms of the Lagrangian as

L = L0 + ∂µη1∂
µη1 − gη41 + ∂µη2∂

µη2 − 5|µ|2η22 − gη42 − LI(η1, η2)

We observe that η1 becomes masssless scalar, where its mass is eaten by η2
which get fat from mass |µ|2 → 5|µ|2, and results with some constant energy L0

from the ground state configuration φ02 and coupling terms LI . The field η1 is
known in the name of massless Goldstone’s boson, which is emerged from the
process of spontaneous symmetry breaking of the SO(2) continuous symmetry of
ground state configuration of the original model.
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2.4.3 Goldstone’s theorem

The theorem state that
”breaking of any continuous symmetry of the degenerate ground state con-

figuration spontaneously will result with massless boson”
This is known as Goldstone or Nambu-Goldstone boson.
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