3 Classical Aspects of Spinor Fields

Spinor field is realized to be (1/2,0) and (0,1/2) representations of Lorentz
group algebra. In this lecture we will determine their classical dynamics from
Lagrangian and Hamiltonian descriptions.

3.1 Dirac spinor field

3.1.1 Dirac equation

Dirac spinor Psi(x) was born from relativistic quantum equation wrote by Dirac.
He start from linear relativistic energy-momentum relation

E=da-p+ pfm (3.1)

which must be fulfill the quadratic relation
E? = (o + ajag)pipj + (i3 + Bag)pi + B2m® = pipi +m? (3.2)
— o+ oy = 25”‘, ;B + 60@ =0, ﬂ2 =1 (33)

Note that {«;} and 8 cannot be numbers but square matrices. The smallest
one are 2x2 matrices, i.e.,

=0 at=0" i=1,2,3 (3.4)

when
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Note that ¥ is 2x2-identity, while {o?} is a set of Pauli’s matrices. These
matrices can fulfill (3.3) except the second relation. Then Dirac move to 4x4
matrices, for convenient of their constructions, by defining

0'0 0 i 0 O'i .
/B_(O _UO>’Q_(Ui 0))1_1a273 (35)

These matrices zre completely fulfill (3.3). Then we get Dirac quantum equation,
after doing the quantization by changing the some physical quantities to be
quantum operators as

E— E =10, prs —iV

From (3.1), we will have
E—-a-p—pm=0— (i0; +id-V — fm)¥(z) =0 (3.6)
Next let us define

5 = "Yoa ﬂai = ’Yiv 1= 13273 — ’Yﬂ = (70371772773) (37)
= {7*,7"} = 2¢9%°, 7 Clifford algebra” (3.8)



With the fact that 82 = 14,4, we have from (3.6)
(170, — m)¥(z) = 0 — (id — m)¥(z) = 0 (3.9)

where the existence of 14,4 with m is understood, and @ = ~v*0,, is known as
Feynman slash notation.
Let us define Dirac conjugation as

T =00 s 0Ty G, +m) =0 (3.10)

. <—
U@ (v#) 1700 +m)y’ =0, (1°)* =1 (3.11)
() = 409790 5 B(i7" D, +m) = 0 (3.12)

We have derived the conjugation of Dirac equation. Multiply Dirac equation
from the left with ¥ and multiply the conjugated equation from the right with
¥, and do the summation we will get

\waﬂ(gullf + U0,V = 9, (i) = 9, = (3.13)
G = iyt (3.14)

We have derived the conserved Dirac current density j*.

3.1.2 Lorentz invariant of Dirac equation

Let us determine Lorentz transformations of spacetime coordinate and Dirac
spinor

ot EL i = NP2 0, = N0, W(z) 5 W () = S(A)WU(z)  (3.15)

The invariant of Dirac equation requires

(i7" 0 —m)¥(z) = 0 ("9, —m)¥'(z) =0 (3.16)
— (iSy*S™TAY 0, — m)V' (2') = 0 (3.17)
— SW“S*IAV# =AY, or STIAHS = AF, Y (3.18)

For infinitesimal Lorentz transforamtion, we can write
i
A (W) =6+, + o= Sw) ~1— ZWWUWJF'" (3.19)

with w?” = —w"". From (3.13), we will have

i

(o", +wh )y = <1 + 4wa50a5) ~H <1 - iwa50a6> (3.20)
1 1 1
Since : wt, 4" = 55”a'mwo‘ﬁ + 55"5%@6“ =3 (0" ays — 5”5'ya)wa/3 (3.21)

1

(3.15) = [v*, 0ap] = 2i(0* 0v3 — 0" 3Y0) = Oap = 5

[Yasvsl (3.22)



Next let us determine Lorentz transformations of Dirac spinors, and its Dirac
conjugation:

U(z) 25 () = SU(x) (3.23)
U(z) == V' (z)) = Ul(2)STH0 = U (2)7%9° 5740
408140 = 671 5 b 2 3 (2) = T (a) S (3.24)
Then we have
()0 (z) 25 ¥'(@) V' (2') = U(2)S~' SV (2) = T(z) T (x) (3.25)
U(2)9, 9 (z) 25 ' (a0, (z') = U(x)S~ A ,0, 50 (x)

=AY, ()0, ¥(z) (3.26)

3.1.3 Free field solutions

Since energy of Dirac spinor field is
E=a- g+ fmw— E?> =5* +m?, E=E,=+yp>+m?

It contains positive and negative energy parts. Dirac was interpreted the neg-
ative energy part as a hole in negative energy sea E < —m?, in the Dirac hole
theory. The positive and negative energy parts always created in pair from this
negative energy sea or always destroyed (annihilated) from pair into this nega-
tive energy sea. So that we must determine solutions of Dirac equation for both
positive and negative energy fields.

a) Positive energy solution: For F > 0, we use the trial solution in the
form

U(x) ~ Uk, s)e™ ™ 2Ey (yih, — m)U(k,s) =0 (3.27)

Rewrite Dirac spinor, let us denote ¢® = 15,9 = 1, as

o wm DE E-m -6k ur \
U_(UQ)H( iy _E_m><u2>_0 (3.28)
= (E—m)u; — (3 - k)ug =0 (3.29)
(G- K)uy — (E+m)uy =0 (3.30)

From (3.30), let us choose

Uy = Xs — lexs =1, szxi = logo (spinor basis) (3.31)
and u G-k Xxs — U(k,s) =N Xs (3.32)
2= ="—Xs ) 8) = N .
E+m E+]:nXS



Let us determine its normalization

_ Gk
Ut = ( XZ EU+le )

2 (& - k)
—2E =Y U'U=|N| <1+(E+m)2> 20

k2 2F
- <”<E+m>2> =P (g - N = VETm

After we have used Pauli matrix identity

(G-@)(& b)=ad-b+axb,

(3.33)

and have used the quadratic energy-momentum relation E? = k2 +m?. We also

have

_ (G- k)

S

= |N|? (1_(]“7”)2)) :N|2<E2_:nm) = N=VE+m

Let us determine its completeness relation

ZUU(Eer)Z( a-i%l )(XZ _Eainxz)

s EtmXs
. P
=(E+m) ST (U k)2 Z s X1
E+m (E—l—rn)2
E+m G-k "
= - = k =
( G-k Em> ik m = e m

(3.34)

(3.35)

b) Negative energy solution: For F < 0, we use trial solution in the

form
U(x) ~ V(k,s)e™ 2y (yk, +m)V(k,s) =0
v () (B E Y ()=
V2 c-k —E+m V2
— (E +m)vy — (- E) =0
(G ko, — (B ) 0

We choos vy = x2(basis spinor), vy =

(3.36)

(3.37)



Then we have

Vi(k,s)= N( ks ) (3.41)

Xs

Let us determine its normalization

ZVTV |N|? Z( E+me Xt ( E+me )
v [ @R fo a2
WQE+mV+Q2;hMA” E+m2H

2F
= |N|? =92E+— N = 42
| |E+ — VE+m (3.42)

We also have

ZVV |N| Z( E+me _Xs <E+me>
S
7 k) k2
IS G fxe = |NJ? 1
V| <(E+m)2 )ZS:XSX NP\ e
— N =

2
= N|27m52

4
E+m (3.43)

So that

Vik,s)=vVE+m ( FivaXs ) (3.44)

Xs

Let us determine its completeness relation

va (E+m)2<%xs>(5ﬁfnxl —xl)

S

(3-K)* E
= (E-|—m) < (E;r]_:} E+m ) ZXSXS
E+m
E-m —&-k
( -E -E )W%m—%m (3.45)
—EBE-m® _p_ gy

After we have used the fact that +m = S
The general free field solution is written in term of Fourier integral with

constraint condition of its energy dispersion Ej = V/ k2 +m?2 as

/ Ak / k,s)U(k,s)e” ™ + b*(k, s)V (k,s)e’ )

x(2m)8(w? — E3) (3.46)

V()



Since L
6(w2 — E,%) = —(0(w— Eg)+ 6w+ Ey))
25,

Then we have

() :/d%z (a(k, s)U(k, s)e™ ™ 40" (k, s)V (k, s)e’™*) _ (3.47)
(2m)32E — k & ’ ’ v ’ w=E}

3.1.4 Dirac Hamiltonian

The conjugate momentum field of gV is

_oc
ICERY

m(z) =00 =l (3.48)
The Dirac Hamiltonian is then derived appear in the form

H = miVy° 000 — L = —i¥7 - VU + mU¥ (3.49)

o H = / B (—i%7 - VU + mi ) (3.50)

From above we have

3
U(z) = / %Z(b(/ﬂ,s)f/(k,s)e—m

S

+a* (k, s)U (k, s)eik'”)w:Ek (3.51)
. djk 7 —ik-x
V\I/(m) =1 mk; (a(k,S)U(k,S)e
—b" (k, $)V (K, 5)e™ ) (3.52)
3.1.5 Spin, helicity and chirality spinors
The spin and helicity operators are defined as
s la a (7 0 s a . (d-p O
S—QZ,E_(O 6>,h_2-p_< 0 5.13) (3.53)

where p = |%|. We can observe that [% - p, H] = 0, this means that helicity
is conserved quantity but not Lorentz invariant since it is written in term of
3-vector. Further more we can observe that, with H = & - p’+ Sm for Dirac
particle,

[, H] #0, [L,H]#0, but [H,L+ S] =0, where L =7 x (3.54)

— J = L+ S total angular momentum (3.55)

This shows that Dirac field particles are spin half fermions.



Let x" be the helicity spinor basis, i.e. iLxh = hx", h = +1, where h = +1
is called right handedness state and h = —1 is called left handedness state. The
Dirac spinor can be expanded on the helicity spinor basis as

h
Ulk,h) =N 2% |~ hU(k,h) = hU (k, h)3.56)
E+m
Gk . h R
Vik,h) = N | EtmX" ) s BV (k, h) = BV (k, h(3.57)
X

W V/MZ( (ky W)U (k, R)e™™ % 4 5" (k, )V (k, h)e'™™) _ . (3.58)
7 ] Gy, o 1O V() g (-

Note that the spin spinor basis x* differs from the helicity spinor basis y".
The chiral operator is defined in the form

. 0 1
vs = 'Y = ( 10 > (3.59)
i 0 —1
1 1/ +1 -1
PL—2(1—’YS)—2< 111 ) (3.61)
1 1/1 1
PR:2(1+’75):2(1 1) (3.62)

Let us determine

@;y(m:N( Xn )w”” (3.63)

E+mxh
) () N1 -1 Xh —ikew
qukhL(x)PL\I]kh(x)< Gk €
A, , o\ -1 1 ZE

Using the identity

ko1 K| Lo 1 K| Lo
1-— =_|1- 1+6-k)+=(1 1-6-k
E+m 2( E—!—m)( to )+2< +E—|—m ( 7 k)

|E| 1 VE? —m?2 1 1 —m?/m?

1— -
E+m E+m 1+m/FE
1m? m m .
~1—<1—2E2+...) (1—E+...)~Ezn0(m/E)



k VET —m? V1+m2/E?
Moy mt_ g viEmy

1 —
+E+m E+m 1+m/FE

1m? m m .
~1+(1+2E2+...) (1—E+...)~2—E2n0(m/E)

From (3.64), we have

N +1 m RS
P (@) = 2( 1 ) [ﬁ(1+0'k‘)
_m =0 —ik-x
+ (1 2E> (1-¢ k)] Xhe (3.65)

We observe that the left-chiral positive energy Dirac spinor contains the mixed
right-handedness and left-handedness helicity states. The same analysis can be
applied to \1/§€+}2R(,’E) and \I/,(;h) R/L(x).

3.1.6 Discrete symmetries of Dirac spinor

Discrete symmetries are spatial inversion or parity P, time reversal T, and
charge conjugation C.
a) Parity transformation P: Let us determine the parity transformation

(t,~2), 9y =+ 0, = (8,~V)  (3.66)
P D= (00, —p), U(z) D W (a') = W (t,~7) = D(P)¥(z)  (3.67)

Py
Tr — X

From Dirac equation
DE: (ir°0y +i7 -V —m)¥(t, ) =0
We will have
DE L (i4°8y — i7 -V — m)¥/(t, —F) = 0 (3.68)
Since {7°,~7%} = 0, multiply through with 7% we will have
(i7°00 + i7 - V — m)y°W' (t, —Z) = 0 (3.69)

Thus we can get invariant Dirac equation under parity transformation if we
have a transformation of Dirac spinor by a phase factor and multiplication with
gamma matrix as

U(t,7) L W (2)) = 7O0 (¢, —F) = U(t, T) (3.70)
0 =1 = ¥'(2)) =~°¥(2) — D(P) =" (3.71)



with arbitrary phase factor. Let us determine Lorentz transformation (LT) and
parity transformation (P) of products of Dirac spinors

— Ul (2)10 10510 SU(x) = U @)y U(2) = V) W(a)  (3.72)
——

= Ul (@)U (2) = U(2)T(z)  (3.73)
This means that W(x)¥(z) is Lorentz scalar. Next let us determine
Tr() = W W (@) = W)y (o)
= Ul(2)8T 9180 (x) = WF(2)7° 7750 1150 (x)
——
—5-1
= U0 SIS W(z) = AP, U (z)y U (x) = A", T (3.74)
——

AH L, yY

PJ*(z) = W' (2" )7y (a') = U1 (2)7°9 0944 0 (2)
= U(2)7°y"7°0(z) = U(z)y"¥(z), 7* = (1°,—9)
JOL g0 T8 T (3.76)

We thus call that J* is an polar vector, i.e., its spatial component changed sign
under parity. In general we will have

Quantity Classification Parity
VA Scalar (S) +
VS0 Pseudoscalar (P) -
N7\ Polar vector (V) +
UryhnS W Axial vector (A) -
[Ty, y¥ ¥ Tensor (T) +

b) Time reversal transformation T: Let us determine the time rever-
sal transformation, dealing with complex conjugation (cc) of the plane wave
solution, in the forms

o L = (—,7), 8, 15 9, = (~00, V) (3.77)
Dt = (%, —p), U(z) D V' (2) = D(T)T* () (3.78)



From Dirac equation (DE)

DE L (—in%8y + iv'0; — m)V' (z ) 0 (3.79)
L8 (190 — i7" 0y — m)W* (2') = 0, 9" = (4 ) (3.80)
ST (900 — "0 — m) (—iy P U (@) - 2alla’w3w<x’>
+208% 00 (') =0 (3.81)
= (17200 + iy 0; — m) (i)Y 3 () =0, i = 1,2,3  (3.82)
T
= U (2)) = iy'y3 U (x) = D(T)¥(z), D(T) =iv'y*  (3.83)

After we have inserted the identity y!y! = 1 = 4343 into (3.81), and also used
the fact that v3y! = —y143.

c) Charge conjugation transformation C: Let us determine the charge
conjugation, deal only with the change from particle into anti-particle or vice
versa of plane wave solution (i.e.this corresponds to Dirac conjugation (dc) of
U), in the form

<
&
1
<
5
i
3

C)W(x)orq/:(j;)&iﬁ:( X ) (3.84)

From Dirac equation

Transposition(T)+dc (( )Ta n m)\fl ( ) -0 (385)

(V)T =094 = ()T = 7090, = (7° 71 —7*,7°)
= Y070, + m)y° U (z) = 0 (3.86)

—iy? x 70(_7*/18“ _ im)’yQ’yO\i/T( ) 262;/,8 ’7 (l‘) =0
= iy2(iv"0,, — m)iy*y "0 (z) = 0 (3.87
2007 () & U(x) — D(C) = iy*y" (3.88)

d) The PCT theorem: Let us determine

() == ¥(a') = D(P) D(C)D(T) ¥ 2) (3.89)
D(P)D(C)D(T) = 1in*yin'y* = wo ° (3.90)
(V"= (3.91)

This means that PCT is another symmetry of Dirac field theory.
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