
3 Classical Aspects of Spinor Fields

Spinor field is realized to be (1/2, 0) and (0, 1/2) representations of Lorentz
group algebra. In this lecture we will determine their classical dynamics from
Lagrangian and Hamiltonian descriptions.

3.1 Dirac spinor field

3.1.1 Dirac equation

Dirac spinor Psi(x) was born from relativistic quantum equation wrote by Dirac.
He start from linear relativistic energy-momentum relation

E = ~α · ~p+ βm (3.1)

which must be fulfill the quadratic relation

E2 = (αiαj + αjαi)pipj + (αiβ + βαi)pi + β2m2 ≡ pipi +m2 (3.2)

7→ αiαj + αjαi = 2δij , αiβ + βαi = 0, β2 = 1 (3.3)

Note that {αi} and β cannot be numbers but square matrices. The smallest
one are 2x2 matrices, i.e.,

β = σ0, αi = σi, i = 1, 2, 3 (3.4)

when

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
Note that σ0 is 2x2-identity, while {σi} is a set of Pauli’s matrices. These
matrices can fulfill (3.3) except the second relation. Then Dirac move to 4x4
matrices, for convenient of their constructions, by defining

β =

(
σ0 0
0 −σ0

)
, αi =

(
0 σi

σi 0

)
, i = 1, 2, 3 (3.5)

These matrices zre completely fulfill (3.3). Then we get Dirac quantum equation,
after doing the quantization by changing the some physical quantities to be
quantum operators as

E 7→ Ê = i∂t, ~p 7→ −i∇

From (3.1), we will have

E − ~α · ~p− βm = 0 7→ (i∂t + i~α · ∇ − βm)Ψ(x) = 0 (3.6)

Next let us define

β = γ0, βαi = γi, i = 1, 2, 3 7→ γµ = (γ0, γ1, γ2, γ3) (3.7)

7→ {γµ, γν} = 2gαβ , ”Clifford algebra” (3.8)
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With the fact that β2 = 14x4, we have from (3.6)

(iγµ∂µ −m)Ψ(x) = 0 7→ (i/∂ −m)Ψ(x) = 0 (3.9)

where the existence of 14x4 with m is understood, and /∂ = γµ∂µ is known as
Feynman slash notation.

Let us define Dirac conjugation as

Ψ̄ = Ψ†γ0 7→ −Ψ†(i(γµ)†
←−
∂ µ +m) = 0 (3.10)

Ψ†γ0(iγ0(γµ)†γ0←−∂ µ +m)γ0 = 0, (γ0)2 = 1 (3.11)

(γµ)† = γ0γµγ0 7→ Ψ̄(iγµ
←−
∂ µ +m) = 0 (3.12)

We have derived the conjugation of Dirac equation. Multiply Dirac equation
from the left with Ψ̄ and multiply the conjugated equation from the right with
Ψ, and do the summation we will get

Ψ̄iγµ
←−
∂ µΨ + Ψ̄γµ∂µΨ = ∂µ(iΨ̄γµΨ) ≡ ∂µjµ = 0 (3.13)

jµ = iΨ̄γµΨ (3.14)

We have derived the conserved Dirac current density jµ.

3.1.2 Lorentz invariant of Dirac equation

Let us determine Lorentz transformations of spacetime coordinate and Dirac
spinor

xµ
LT−−→ x′µ = Λµνx

ν , ∂µ = Λνµ∂
′
ν , Ψ(x)

LT−−→ Ψ′(x′) = S(Λ)Ψ(x) (3.15)

The invariant of Dirac equation requires

(iγµ∂µ −m)Ψ(x) = 0 7→ (iγµ∂′µ −m)Ψ′(x′) = 0 (3.16)

→ (iSγµS−1Λνµ∂
′
ν −m)Ψ′(x′) = 0 (3.17)

→ SγµS−1Λνµ = γν , or S−1γµS = Λµνγ
ν (3.18)

For infinitesimal Lorentz transforamtion, we can write

Λµν(ω) ' δµν + ωµν + .. 7→ S(ω) ' 1− i

4
ωµνσ

µν + ... (3.19)

with ωµν = −ωνµ. From (3.13), we will have

(δµν + ωµν)γν =

(
1 +

i

4
ωαβσ

αβ

)
γµ
(

1− i

4
ωαβσ

αβ

)
(3.20)

Since : ωµνγ
ν =

1

2
δµαγβω

αβ +
1

2
δµβγαω

βα =
1

2
(δµαγβ − δµβγα)ωαβ (3.21)

(3.15) 7→ [γµ, σαβ ] = 2i(δµαγβ − δµβγα)→ σαβ =
i

2
[γα, γβ ] (3.22)
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Next let us determine Lorentz transformations of Dirac spinors, and its Dirac
conjugation:

Ψ(x)
LT−−→ Ψ′(x′) = SΨ(x) (3.23)

Ψ̄(x)
LT−−→ Ψ̄′(x′) = Ψ†(x)S†γ0 = Ψ†(x)γ0γ0S†γ0

7→ γ0S†γ0 = S−1 → Ψ̄
LT−−→ Ψ̄′(x′) = Ψ̄(x)S−1 (3.24)

Then we have

Ψ̄(x)Ψ(x)
LT−−→ Ψ̄′(x′)Ψ′(x′) = Ψ̄(x)S−1SΨ(x) = Ψ̄(x)Ψ(x) (3.25)

Ψ̄(x)∂µΨ(x)
LT−−→ Ψ̄′(x′)∂′µΨ′(x′) = Ψ̄(x)S−1Λνµ∂νSΨ(x)

= ΛνµΨ̄(x)∂νΨ(x) (3.26)

3.1.3 Free field solutions

Since energy of Dirac spinor field is

E = ~α · ~p+ βm 7→ E2 = ~p2 +m2, E = Ep = ±
√
~p2 +m2

It contains positive and negative energy parts. Dirac was interpreted the neg-
ative energy part as a hole in negative energy sea E ≤ −m2, in the Dirac hole
theory. The positive and negative energy parts always created in pair from this
negative energy sea or always destroyed (annihilated) from pair into this nega-
tive energy sea. So that we must determine solutions of Dirac equation for both
positive and negative energy fields.

a) Positive energy solution: For E > 0, we use the trial solution in the
form

Ψ(x) ∼ U(k, s)e−ik·x
DE−−→ (γµkµ −m)U(k, s) = 0 (3.27)

Rewrite Dirac spinor, let us denote σ0 = 12x2 ≡ 1, as

U =

(
u1

u2

)
DE−−→

(
E −m −~σ · ~k
~σ · ~k −E −m

)(
u1

u2

)
= 0 (3.28)

7→ (E −m)u1 − (~σ · ~k)u2 = 0 (3.29)

(~σ · ~k)u1 − (E +m)u2 = 0 (3.30)

From (3.30), let us choose

u1 = χs 7→
∑
s

χ†sχs = 1,
∑
s

χsχ
†
s = 12x2 (spinor basis) (3.31)

and u2 =
~σ · ~k
E +m

χs 7→ U(k, s) = N

(
χs

~σ·~k
E+mχs

)
(3.32)
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Let us determine its normalization

U† =
(
χ†s

~σ·~k
E+mχ

†
s

)
7→ 2E =

∑
s

U†U = |N |2
(

1 +
(~σ · ~k)2

(E +m)2

)∑
s

χ†sχs

= |N |2
(

1 +
~k2

(E +m)2

)
= |N |2

(
2E

E +m

)
→ N =

√
E +m (3.33)

After we have used Pauli matrix identity

(~σ · ~a)(~σ ·~b) = ~a ·~b+ ~a×~b,

and have used the quadratic energy-momentum relation E2 = ~k2 +m2. We also
have

Ū =
(
χ†s − ~σ·~k

E+mχ
†
s

)
7→ 2m =

∑
s

ŪU = |N |2
(

1− (~σ · ~k)2

(E +m)2

)∑
s

χ†sχs

= |N |2
(

1−
~k2

(E +m)2

)
= |N |2

(
2m

E +m

)
7→ N =

√
E +m (3.34)

Let us determine its completeness relation

∑
s

UŪ = (E +m)
∑
s

(
χ1

~σ·~k
E+mχs

)(
χ†s − ~σ·~k

E+mχ
†
s

)
= (E +m)

(
1 − ~σ·~k

E+m
~σ·~k
E+m − (~σ·~k)2

(E+m)2

)∑
s

χsχ
†
s

=

(
E +m −~σ · ~k
~σ · ~k E −m

)
≡ γµkµ +m = /k +m (3.35)

b) Negative energy solution: For E < 0, we use trial solution in the
form

Ψ(x) ∼ V (k, s)eik·x
DE−−→ (γµkµ +m)V (k, s) = 0 (3.36)

V =

(
v1

v2

)
7→

(
E +m −~σ · ~k
~σ · ~k −E +m

)(
v1

v2

)
= 0 (3.37)

7→ (E +m)v1 − (~σ · ~k)v2 = 0 (3.38)

(~σ · ~k)v1 − (E −m)v2 = 0 (3.39)

We choos v2 = χ2(basis spinor), v1 =
~σ · ~k
E +m

χs (3.40)
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Then we have

V (k, s) = N

(
~σ·~k
E+mχs
χs

)
(3.41)

Let us determine its normalization∑
s

V †V = |N |2
∑
s

(
~σ·~k
E+mχ

†
s χ†s

)( ~σ·~k
E+mχs
χs

)

= |N |2
(

(~σ · ~k)2

(E +m)2
+ 1

)∑
s

χ†sχs = |N |2
(

~k2

(E +m)2
+ 1

)

= |N |2 2E

E +m
≡ 2E 7→ N =

√
E +m (3.42)

We also have ∑
s

V̄ V = |N |2
∑
s

(
~σ·~k
E+mχ

†
s −χ†s

)( ~σ·~k
E+mχs
χs

)

= |N |2
(

(~σ · ~k)2

(E +m)2
− 1

)∑
s

χ†sχs = |N |2
(

~k2

(E +m)2
− 1

)

= |N |2 2m

E +m
≡ 2m 7→ N =

√
E +m (3.43)

So that

V (k, s) =
√
E +m

(
~σ·~k
E+mχs
χs

)
(3.44)

Let us determine its completeness relation∑
s

V (k, s)V̄ (k, s) = (E +m)
∑
s

(
~σ·~k
E+mχs
χs

)(
~σ·~k
E+mχ

†
s −χ†s

)
= (E +m)

(
(~σ·~k)2

(E+m)2 − ~σ·~k
E+m

~σ·~k
E+m −1

)∑
s

χsχ
†
s

=

(
E −m −~σ · ~k
~σ · ~k −E −m

)
= γµkµ −m ≡ /k −m (3.45)

After we have used the fact that
~k2

E+m = E2−m2

E+m = E −m.
The general free field solution is written in term of Fourier integral with

constraint condition of its energy dispersion Ek =
√
~k2 +m2 as

Ψ(x) =

∫
d3k

(2π)3

∫
dω

2π

∑
s

(
a(k, s)U(k, s)e−ik·x + b∗(k, s)V (k, s)eik·x

)
×(2π)δ(ω2 − E2

k) (3.46)
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Since

δ(ω2 − E2
k) =

1

2Ek
(δ(ω − Ek) + δ(ω + Ek))

Then we have

Ψ(x) =

∫
d3k

(2π)32E − k
∑
s

(
a(k, s)U(k, s)e−ik·x + b∗(k, s)V (k, s)eik·x

)
ω=Ek

(3.47)

3.1.4 Dirac Hamiltonian

The conjugate momentum field of ∂0Ψ is

π(x) =
∂L
∂∂0Ψ

= iΨ̄γ0 = iΨ† (3.48)

The Dirac Hamiltonian is then derived appear in the form

H = πiΨ̄γ0∂0Ψ− L = −iΨ̄~γ · ∇Ψ +mΨ̄Ψ (3.49)

7→ H =

∫
d3x

(
−iΨ̄~γ · ∇Ψ +mΨ̄Ψ

)
(3.50)

From above we have

Ψ̄(x) =

∫
d3k

(2π)32Ek

∑
s

(
b(k, s)V̄ (k, s)e−ik·x

+a∗(k, s)Ū(k, s)eik·x
)
ω=Ek

(3.51)

∇Ψ(x) = i

∫
d3k

(2π)32Ek
~k
∑
s

(
a(k, s)U(k, s)e−ik·x

−b∗(k, s)V (k, s)eik·x
)
ω=Ek

(3.52)

3.1.5 Spin, helicity and chirality spinors

The spin and helicity operators are defined as

~S =
1

2
~Σ, ~Σ =

(
~σ 0
0 ~σ

)
, ĥ = ~Σ · p̂ =

(
~σ · p̂ 0

0 ~σ · p̂

)
(3.53)

where p̂ = ~p
|~p| . We can observe that [~Σ · p̂, H] = 0, this means that helicity

is conserved quantity but not Lorentz invariant since it is written in term of
3-vector. Further more we can observe that, with H = ~α · ~p + βm for Dirac
particle,

[~Σ, H] 6= 0, [~L,H] 6= 0, but [H, ~L+ ~S] = 0, where ~L = ~r × ~p (3.54)

7→ ~J = ~L+ ~S total angular momentum (3.55)

This shows that Dirac field particles are spin half fermions.
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Let χh be the helicity spinor basis, i.e. ĥχh = hχh, h = ±1, where h = +1
is called right handedness state and h = −1 is called left handedness state. The
Dirac spinor can be expanded on the helicity spinor basis as

U(k, h) = N

(
χh

~σ·~k
E+mχ

h

)
7→ ĥU(k, h) = hU(k, h)(3.56)

V (k, h) = N

(
~σ·~k
E+mχ

h

χh

)
7→ ĥV (k, h) = hV (k, h)(3.57)

Ψ(x) =

∫
d3k

(2π)32Ek

∑
h

(
a(k, h)U(k, h)e−ik·x + b∗(k, h)V (k, h)eik·x

)
ω=Ek

(3.58)

Note that the spin spinor basis χs differs from the helicity spinor basis χh.
The chiral operator is defined in the form

γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
(3.59)

7→ {γ5, γ
µ} = 0, [γ5, H] = 2m

(
0 −1
1 0

)
(3.60)

PL =
1

2
(1− γ5) =

1

2

(
+1 −1
−1 +1

)
(3.61)

PR =
1

2
(1 + γ5) =

1

2

(
1 1
1 1

)
(3.62)

Let us determine

Ψ
(+)
k,h (x) = N

(
χh

~σ·~k
E+mχh

)
e−ik·x (3.63)

7→ Ψ
(+)
k,h,L(x) = PLΨ

(+)
k,h (x) =

N

2

(
1 −1
−1 1

)(
χh

~σ·~k
E+mχh

)
e−ik·x

=
N

2

(
+1
−1

)(
1− ~σ · ~k

E +m

)
χhe

−ik·x (3.64)

Using the identity

1− ~σ · ~k
E +m

=
1

2

(
1− |~k|

E +m

)
(1 + ~σ · k̂) +

1

2

(
1 +

|~k|
E +m

)
(1− ~σ · k̂)

1− |~k|
E +m

= 1−
√
E2 −m2

E +m
= 1−

√
1−m2/m2

1 +m/E

∼ 1−
(

1− 1

2

m2

E2
+ ...

)(
1− m

E
+ ...

)
∼ m

E
in O(m/E)
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1 +
|~k|

E +m
= 1 +

√
E2 −m2

E +m
= 1 +

√
1 +m2/E2

1 +m/E

∼ 1 +

(
1 +

1

2

m2

E2
+ ...

)(
1− m

E
+ ...

)
∼ 2− m

E
in O(m/E)

From (3.64), we have

PLΨ
(+)
k,h,L(x) =

N

2

(
+1
−1

)[ m
2E

(1 + ~σ · k̂)

+
(

1− m

2E

)
(1− ~σ · ~k)

]
χhe

−ik·x (3.65)

We observe that the left-chiral positive energy Dirac spinor contains the mixed
right-handedness and left-handedness helicity states. The same analysis can be

applied to Ψ
(+)
k,h,R(x) and Ψ

(−)
k,h,R/L(x).

3.1.6 Discrete symmetries of Dirac spinor

Discrete symmetries are spatial inversion or parity P , time reversal T , and
charge conjugation C.

a) Parity transformation P : Let us determine the parity transformation

x
P−→ x′ = (t,−~x), ∂µ

P−→ ∂′µ = (∂0,−∇) (3.66)

pµ
P−→ p′µ = (p0,−~p), Ψ(x)

P−→ Ψ′(x′) = Ψ′(t,−~x) = D(P )Ψ(x) (3.67)

From Dirac equation

DE : (iγ0∂0 + i~γ · ∇ −m)Ψ(t, ~x) = 0

We will have

DE
P−→ (iγ0∂0 − i~γ · ∇ −m)Ψ′(t,−~x) = 0 (3.68)

Since {γ0, γi} = 0, multiply through with γ0 we will have

(iγ0∂0 + i~γ · ∇ −m)γ0Ψ′(t,−~x) = 0 (3.69)

Thus we can get invariant Dirac equation under parity transformation if we
have a transformation of Dirac spinor by a phase factor and multiplication with
gamma matrix as

Ψ(t, ~x)
P−→ Ψ′(x′) = γ0Ψ′(t,−~x) ≡ Ψ(t, ~x) (3.70)

γ0γ0 = 1→ Ψ′(x′) = γ0Ψ(x) 7→ D(P ) = γ0 (3.71)
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with arbitrary phase factor. Let us determine Lorentz transformation (LT) and
parity transformation (P) of products of Dirac spinors

Ψ̄(x)Ψ(x)
LT−−→ Ψ̄′(x′)Ψ′(x′) = Ψ†(x)S†γ0SΨ(x)

= Ψ†(x)γ0 γ0S†γ0︸ ︷︷ ︸
=S−1

SΨ(x) = Ψ†(x)γ0Ψ(x) = Ψ̄(x)Ψ(x) (3.72)

Ψ̄(x)
P−→ Ψ̄′(x′)Ψ′(x′) = Ψ′†(x′)γ0Ψ′(x′) = (γ0Ψ(x))† γ0γ0︸︷︷︸

=1

Ψ(x)

= Ψ†(x)γ0Ψ(x) = Ψ̄(x)Ψ(x) (3.73)

This means that Ψ̄(x)Ψ(x) is Lorentz scalar. Next let us determine

J ′µ(x′) = Ψ̄′(x′)γµΨ′(x′) = Ψ′†(x′)γ0γµΨ′(x′)

= Ψ†(x)S†γ0γµSΨ(x) = Ψ†(x)γ0 γ0S†γ0︸ ︷︷ ︸
=S−1

γµSΨ(x)

= Ψ†γ0 S−1γµS︸ ︷︷ ︸
Λµνγν

Ψ(x) = ΛµνΨ̄(x)γνΨ(x) ≡ ΛµνJ
ν (3.74)

PJµ(x) = Ψ′†(x′)γ0γµΨ′(x′) = Ψ†(x)γ0γ0γµγ0Ψ(x)

= Ψ̄(x)γ0γµγ0Ψ(x) = Ψ̄(x)γ′µΨ(x), γ′µ = (γ0,−~γ) (3.75)

J0 P−→ J0, ~J
P−→ − ~J (3.76)

We thus call that Jµ is an polar vector, i.e., its spatial component changed sign
under parity. In general we will have

Quantity Classification Parity
Ψ̄Ψ Scalar (S) +

Ψ̄γ5Ψ Pseudoscalar (P) -
Ψ̄γµΨ Polar vector (V) +

Ψ̄γµγ5Ψ Axial vector (A) -
[Ψ̄[γµ, γν ]Ψ Tensor (T) +

b) Time reversal transformation T : Let us determine the time rever-
sal transformation, dealing with complex conjugation (cc) of the plane wave
solution, in the forms

xµ
T−→ x′µ = (−t, ~x), ∂µ

T−→ ∂′µ = (−∂0,∇) (3.77)

pµ
T−→ p′µ = (p0,−~p), Ψ(x)

T−→ Ψ′(x′) = D(T )Ψ∗(x) (3.78)
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From Dirac equation (DE)

DE
T−→ (−iγ0∂0 + iγi∂i −m)Ψ′(x′) = 0 (3.79)

c.c.−−→ (iγ0∂0 − iγ′i∂i −m)Ψ′∗(x′) = 0, ∂′i = (γ1,−γ2, γ3) (3.80)

−iγ1γ3×−−−−−−→ (iγ0∂0 − iγ′i∂i −m)(−i)γ1γ3Ψ′∗(x′)− 2δ1i∂′iγ
3Ψ′∗(x′)

+2δ3i∂′iγ
1Ψ′∗(x′) = 0 (3.81)

7→ (iγ0∂0 + iγi∂i −m) (−i)γ1γ3Ψ′∗(x)︸ ︷︷ ︸
=Ψ(x)

= 0, i = 1, 2, 3 (3.82)

7→ Ψ′(x′) = iγ1γ3Ψ∗(x) = D(T )Ψ(x), D(T ) = iγ1γ3 (3.83)

After we have inserted the identity γ1γ1 = 1 = γ3γ3 into (3.81), and also used
the fact that γ3γ1 = −γ1γ3.

c) Charge conjugation transformation C: Let us determine the charge
conjugation, deal only with the change from particle into anti-particle or vice
versa of plane wave solution (i.e.this corresponds to Dirac conjugation (dc) of
Ψ), in the form

Ψ(x)
C−→ Ψ′(x) = D(C)Ψ̄T (x) or Ψ =

(
χ
η

)
C−→ Ψ̄T =

(
χ†

−η†
)

(3.84)

From Dirac equation

Transposition(T )+dc−−−−−−−−−−−−−−→ (i(γµ)T∂µ +m)Ψ̄T (x) = 0 (3.85)

(γµ)† = γ0γµγµ 7→ (γµ)T = γ0γ∗µγ0, γ∗µ = (γ0, γ1,−γ2, γ3)

7→ γ0(iγ∗µ∂µ +m)γ0Ψ̄T (x) = 0 (3.86)

−iγ2×−−−−→ γ0(−γ∗µ∂µ − im)γ2γ0Ψ̄T (x)− 2δ2µ∂µγ
0Ψ̄T (x) = 0

7→ iγ0(iγµ∂µ −m)iγ2γ0Ψ̄T (x) = 0 (3.87)

iγ2γ0Ψ̄T (x)
C←− Ψ(x) 7→ D(C) = iγ2γ0 (3.88)

d) The PCT theorem: Let us determine

Ψ(x)
PCT−−−→ Ψ′(x′) ≡ D(P )D(C)D(T )Ψ(x) (3.89)

D(P )D(C)D(T ) = γ0iγ2γ0iγ1γ3 = iγ0γ5 (3.90)

{γ5, γµ} = 0 (3.91)

This means that PCT is another symmetry of Dirac field theory.
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