4 Weyl and Majorana Spinor Fields

4.1 Weyl spinor

4.1.1 Weyl representation of gamma matrix

Let us determine massless Dirac equation

$$i\gamma^{\mu}\partial_{\mu}\Psi(x) = 0 \tag{4.1}$$

where γ^{μ} is Dirac gamma matrix, satisfy Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$. Solution of (4.1) cannot derived within Dirac representation of the gamma matrices as

$$\gamma^{0} = \beta = \begin{pmatrix} \sigma^{0} & 0\\ 0 & -\sigma^{0} \end{pmatrix}, \ \gamma^{i} = \beta \alpha^{i} = \begin{pmatrix} 0 & \sigma^{i}\\ -\sigma^{i} & 0 \end{pmatrix}, \ i = 1, 2, 3$$

where $\sigma^0 = 1$ is 2x2 identity and $\{\sigma^i\}$ is a set of Pauli matrices. On the other hand, solution of (4.1) can be well derive within Weyl representation of the gamma matrix as

$$\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix}, \text{ where } \sigma^{\mu} = (1, \vec{\sigma}), \ \bar{\sigma}^{\mu} = (1, -\vec{\sigma}) \tag{4.2}$$

$$\mapsto \{\sigma^{\mu}, \bar{\sigma}^{\nu}\} = 2g^{\mu\nu}, \ \gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$
(4.3)

Trial positive energy solution of (4.1) is written as $\Psi^{(+)}(x) \sim U(k)e^{-ik \cdot x}$, so that from (4.1) we will have

$$\gamma^{\mu}k_{\mu}U(k,h) = 0 \qquad (4.4)$$

For
$$U = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \mapsto \begin{pmatrix} 0 & \sigma^{\mu}k_{\mu} \\ \bar{\sigma}^{\mu}k_{\mu} & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 0$$
 (4.5)

$$\mapsto 0 = \bar{\sigma}^{\mu} k_{\mu} u_1 = (k^0 + \vec{\sigma} \cdot \vec{k}) u_1 = k^0 (1 + \hat{h}) u_1 \to \hat{h} u_1 = -u_1 \tag{4.6}$$

$$\mapsto 0 = \sigma^{\mu} k_{\mu} u_2 = (k^0 - \vec{\sigma} \cdot \vec{k}) u_2 = k^0 (1 - \hat{h}) u_2 \to \hat{h} u_2 = + u_2$$
(4.7)

after we have used the fact that $k^2 = 0 \mapsto (k^0)^2 = |\vec{k}|^2$, and we have defined *helicity operator* $\hat{h} = \vec{\sigma} \cdot \hat{k}$, where $\hat{k} = \vec{k}/|\vec{k}|$. Note also that

$$h\chi_h = h\chi_h, \ h = \pm 1$$

where h = +1 is called *right handedness helicity* and h = -1 is called *left handedness helicity*, and χ_h is called *helicity-spinor*. From above we observe that u_1 is left-handedness helicity spinor, and u_2 is right handedness helicity spinor. Let us denote them as

$$u_1(k) = \chi_{-1}(k) = \eta(k), \ u_2(k) = \chi_+(k) = \bar{\psi}(k) \mapsto U(k) = \begin{pmatrix} \eta(k) \\ \bar{\psi}(k) \end{pmatrix}$$
(4.8)

$$\eta(x) \sim \eta(k) e^{-ik \cdot x}, \bar{\psi}(x) \sim \bar{\psi}(k) e^{-ik \cdot x} \mapsto \Psi^{(+)}(x) = \begin{pmatrix} \eta(x) \\ \bar{\psi}(x) \end{pmatrix} \quad (4.9)$$

For the trial negative energy solution, we write $\Psi^{(-)}(x) \sim V(k)e^{ik \cdot x}$, from (4.1) we have

$$-\gamma^{\mu}k_{\mu}V(k) = 0 \tag{4.10}$$

This shows that V(k) satisfy the same equation as U(k) but must differ from U(k). From (4.8), we have only one way to write for the different solution

$$V(k) = \begin{pmatrix} v_1(k) \\ v_2(k) \end{pmatrix}, \mapsto v_1 = u_1, \ v_2 = -u_2, \mapsto V(k) = \begin{pmatrix} \eta(k) \\ -\bar{\psi}(k) \end{pmatrix}$$
(4.11)
$$\mapsto \Psi^{(-)}(x) = \begin{pmatrix} \eta(x) \\ -\bar{\psi}(x) \end{pmatrix}$$
(4.12)

$$\mapsto \Psi^{(-)}(x) = \begin{pmatrix} \eta(x) \\ -\bar{\psi}(x) \end{pmatrix} \quad (4.12)$$

This means that Weyl solution of massless Dirac equation is well written in terms of helicity spinors.

4.1.2 Chirality of massless Dirac spinor

Chiral operators are defined as

$$P_{R/L} = \frac{1}{2}(1 \pm \gamma^5) \mapsto P_R = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ P_L = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
(4.13)

Chirality of Dirac spinor is then appear as

$$\Psi_R^{(\pm)}(x) = P_R \Psi^{(\pm)}(x) = \begin{pmatrix} 0\\ \pm \bar{\psi}(x) \end{pmatrix}$$
(4.14)

$$\Psi_L^{(\pm)}(x) = P_L \Psi^{(\pm)}(x) = \begin{pmatrix} \eta(x) \\ 0 \end{pmatrix}$$
(4.15)

This shows that right chiral Dirac spinor is connected to right handedness helicity spinor, and left chiral Dirac spinor is connected to right handedness helicity spinor

4.1.3 Dirac Lagrangian in terms of Weyl spinors

The massless Dirac Lagrangian is

$$\mathcal{L} = \bar{\Psi} i \gamma^{\mu} \partial_{\mu} \Psi = i \begin{pmatrix} \bar{\psi}^{\dagger} & \eta^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} \partial_{\mu} \begin{pmatrix} \eta \\ \bar{\psi} \end{pmatrix}$$
$$= i \eta^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \eta + i \bar{\psi}^{\dagger} \sigma^{\mu} \partial_{\mu} \bar{\psi}$$
(4.16)

This leads to Weyl equations for left-handedness and right handedness spinors as

$$i\bar{\sigma}^{\mu}\partial_{\mu}\eta = 0$$
, and $i\sigma^{\mu}\partial_{\mu}\bar{\psi} = 0$ (4.17)

4.1.4 Spinor indices

Let us assign indices for left handedness and right handedness spinors in the form

$$\eta \mapsto \eta^{\alpha}, \ \eta^{\dagger} \mapsto (\eta^{\alpha})^{\dagger} = \bar{\eta}^{\dot{\alpha}}$$

$$(4.18)$$

$$\bar{\psi} \mapsto \bar{\psi}_{\dot{\alpha}}, \ \bar{\psi}^{\dagger} \mapsto (\bar{\psi}_{\dot{\alpha}})^{\dagger} = \psi_{\alpha}$$
(4.19)

with $\alpha, \beta, \ldots = 1, 2$ and $\dot{\alpha}, \dot{\beta}, \ldots = \dot{1}, \dot{2}$. We can lift or lower these indices by using total antisymmetric tensor as

$$\epsilon^{\alpha\beta} = \epsilon^{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} = -\epsilon_{\alpha\beta} = -\epsilon_{\dot{\alpha}\dot{\beta}}$$
(4.20)

$$\rightarrow \eta_{\alpha} = \epsilon_{\alpha\beta}\eta^{\beta}, \eta^{\alpha} = \epsilon^{\alpha\beta}\eta_{\beta}, \text{ and } \bar{\psi}^{\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}}\bar{\psi}_{\dot{\beta}}, \ \bar{\psi}_{\dot{\alpha}} = \epsilon_{\dot{\alpha}\dot{\beta}}\bar{\psi}^{\dot{\beta}}$$
(4.21)

The contractions are defined as

$$\eta \cdot \eta = \eta_{\alpha} \eta^{\alpha}, \text{ and } \bar{\psi} \cdot \bar{\psi} = \bar{\psi}^{\dot{\alpha}} \bar{\psi}_{\dot{\alpha}}$$

$$(4.22)$$

Similarly we also assign the spinor indices to gamma matrix in the form

$$i\eta^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\eta \mapsto i\bar{\eta}^{\dot{\alpha}}\bar{\sigma}^{\mu}_{\dot{\alpha}\beta}\partial_{\mu}\eta^{\beta} \tag{4.23}$$

$$i\bar{\psi}^{\dagger}\sigma^{\mu}\partial_{\mu}\bar{\psi}\mapsto i\psi_{\alpha}\sigma^{\mu,\alpha\dot{\beta}}\partial_{\mu}\bar{\psi}_{\dot{\beta}} \qquad (4.24)$$

$$\{\sigma^{\mu}, \bar{\sigma}^{\nu}\} = \gamma^{\mu} \bar{\sigma}^{\nu} + \bar{\sigma}^{\nu} \sigma^{\mu} \mapsto \sigma^{\mu,\alpha\dot{\beta}} \bar{\sigma}_{\dot{\beta}\alpha} + \bar{\sigma}^{\nu}_{\dot{\alpha}\beta} \sigma^{\mu,\beta\dot{\alpha}} = 2g^{\mu\nu}$$
(4.25)

$$\sigma^{\mu}k_{\mu} \mapsto \sigma^{\mu,\alpha\dot{\beta}}k_{\mu} \equiv k^{\alpha\dot{\beta}} = \begin{pmatrix} k^{0} - k^{3} & -k^{1} + ik^{2} \\ -k^{1} - ik^{2} & k^{0} + k^{3} \end{pmatrix}$$
(4.26)

$$\bar{\sigma}^{\mu}k_{\mu} = \bar{\sigma}^{\mu}_{\dot{\alpha}\beta}k_{\mu} \equiv k_{\dot{\alpha}\beta} = \begin{pmatrix} k^{0} + k^{3} & k^{1} - ik^{2} \\ k^{1} + ik^{2} & k^{0} - k^{3} \end{pmatrix}$$
(4.27)

$$\det(k) = (k^0)^2 - |\vec{k}|^2 = k^2 = 0 \mapsto k^\mu - null \ vector \tag{4.28}$$

4.1.5 Spinor repsentation of Lorentz transformation

Let us determine Lorentz transformation of Weyl equation (WE)

$$x \xrightarrow{LT} x' = \Lambda x, \ \eta(x) \xrightarrow{LT} \eta'(x') = S(\Lambda)\eta(x)$$
 (4.29)

$$WE \xrightarrow{LT} iD\bar{\sigma}^{\mu}\partial_{\mu}\eta(x) = i\underbrace{D\bar{\sigma}^{\mu}D^{-1}}_{=\Lambda^{\mu}\nu\bar{\sigma}^{\nu}}\partial_{\mu}D\eta(x) = i\bar{\sigma}^{\nu}\partial_{\nu}'\eta'(x') = 0$$
(4.30)

From infinitesimal transformation $\Lambda\simeq 1+\omega,$ we have

$$D(\omega) = e^{-i\frac{1}{2}\omega_{\mu\nu}S^{\mu\nu}}, \text{ where } S^{\mu\nu} = \frac{1}{4}[\gamma^{\mu}, \gamma^{\nu}]$$
 (4.31)

Since

$$[\gamma^{\mu}, \gamma^{\nu}] = \gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu}$$

$$= \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{\nu} \\ \bar{\sigma}^{\nu} & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma^{\nu} \\ \bar{\sigma}^{\nu} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \sigma^{\mu} \bar{\sigma}^{\nu} - \sigma^{\nu} \bar{\sigma}^{\mu} & 0 \\ 0 & \bar{\sigma}^{\mu} \sigma^{\nu} - \bar{\sigma}^{\nu} \sigma^{\mu} \end{pmatrix} = \begin{pmatrix} 4\sigma^{\mu\nu} & 0 \\ 0 & 4\bar{\sigma}^{\mu\nu} \end{pmatrix}$$

where

$$\sigma^{\mu\nu} = (\sigma^{\mu\nu})_{\alpha}{}^{\beta}, \ (\bar{\sigma}^{\mu\nu})^{\dot{\alpha}}{}_{\dot{\beta}}, \text{ and } S^{\mu\nu} = \begin{pmatrix} \sigma^{\mu\nu} & 0\\ 0 & \bar{\sigma}^{\mu\nu} \end{pmatrix}$$
$$D(\omega) = \begin{pmatrix} M & 0\\ 0 & \bar{M} \end{pmatrix}, \ M = e^{-\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}}, \ \bar{M} = e^{-\frac{i}{2}\omega_{\mu\nu}\bar{\sigma}^{\mu\nu}}$$

4.2 Majorana spinor field

Majorana representation of Dirac gamma matrices are

$$\tilde{\gamma}^0 = \sigma^2 \otimes \sigma^1, \ \tilde{\gamma}^1 = i\sigma^1 \otimes 1, \ \tilde{\gamma}^2 = i\sigma^3 \otimes 1, \ \tilde{\gamma}^3 = i\sigma^2 \otimes \sigma^2 \tag{4.32}$$

Dirac equation will appear in the form

$$(i\tilde{\gamma}^{\mu}\partial_{\mu} - m)\tilde{\Psi}(x) = 0 \tag{4.33}$$

where $\tilde{\Psi}(x)$ is Majorana spinor. Since $\tilde{\gamma}^{\mu}$ is pure complex, this will make Dirac equation to be real and Majorana solution will be real spinor. For massless field, we can write

$$\tilde{\Psi}(x) = \begin{pmatrix} \eta_{\alpha}(x) \\ \bar{\eta}^{\dot{\alpha}}(x) \end{pmatrix} \mapsto (\tilde{\Psi}^{\dagger})^{T}(x) = \tilde{\Psi}(x)$$
(4.34)