5 Classical Aspects of Vector Fields

5.1 Maxwell vector field

5.1.1 Maxwell field Lagrangian

Let us determine electromagnetic field as classical massless vector field, known as Maxwell field. Its dynamics is determined from Lorentz vector field $A^{\mu}(x)$, known as 4-potential, and its Lagrangian is written in term of field strength tensor

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}, \ F^{\mu\nu} = -F^{\nu\mu} \mapsto F^{00} = F^{ii} = 0; i = 1, 2, 3$$
(5.1)

$$F^{0i} = \partial_0 A^i + \partial_i A^0 = -E^i, \qquad (5.2)$$

$$F^{ij} = -(\partial_i A^j - \partial_j A^i) = -\epsilon^{ijk} B^k \tag{5.3}$$

$$F_{\mu\nu} = g_{\mu\alpha}g_{\nu\beta}F^{\alpha\beta} \mapsto F_{0i} = -F^{0i}, \ F_{ij} = F^{ij} \tag{5.4}$$

Bianchi identity
$$\partial_{\nu}F_{\rho\sigma} + \partial_{\sigma}F_{\nu\rho} + \partial_{\rho}F_{\sigma\nu} = 0$$
 (5.5)

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = -\frac{1}{2}F_{0i}F^{0i} - \frac{1}{2}F_{ij}F^{ij} = \frac{1}{2}E^iE^i - \frac{1}{2}B^kB^k$$
(5.6)

$$\mapsto L = -\frac{1}{4} \int d^3 x F_{\mu\nu} F^{\mu\nu} \equiv \frac{1}{2} \int d^3 x (\vec{E}^2 - \vec{B}^2)$$
(5.7)

$$S[A^{\mu}] = -\frac{1}{4} \int d^4 x F_{\mu\nu} F^{\mu\nu}$$
 (5.8)

5.1.2 Gauge symmetry

Let us determine a transformation of vector field

$$A^{\mu} \to A^{\prime \mu} = A^{\mu} + \partial^{\mu} \chi \mapsto F^{\mu\nu} \to F^{\prime \mu\nu} = F^{\mu\nu}$$
(5.9)

for arbitrary scalar function $\chi(x)$. This symmetry had got the name of *gauge* symmetry by Herman Weyl. To get the physical vector field, we have to break this symmetry by applying with *gauge fixing condition*, in which the commonly used conditions are

- Lorentz condition: $\partial_{\mu}A^{\mu}(x) = 0$,
- Coulomb condition: $\nabla \cdot \vec{A} = 0$.

With Lorentz gauge condition, its Euler-Lagrange equation becomes

$$\frac{\partial \mathcal{L}}{\partial A_{\nu}} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial_{\mu} A_{\nu}} = 0, \ \mathcal{L} = -\frac{1}{2} \partial_{\mu} A_{\nu} F^{\mu\nu}$$
(5.10)

$$\mapsto \partial_{\mu}F^{\mu\nu} = \partial^2 A_{\nu} - \partial_{\nu}\partial_{\mu}A^{\mu} \mapsto \partial^2 A^{\mu} = 0$$
(5.11)

5.1.3 Free field solution

Its trial free field solution is

$$A^{\mu}(x) \sim \epsilon^{\mu}(k,\lambda)a(k,\lambda)e^{-ik\cdot x} \mapsto -k^{2}\epsilon^{\mu}(k,\lambda)a(k,\lambda) = 0$$
(5.12)

$$\rightarrow k^2 = \omega^2 - \vec{k} \cdot \vec{k} = 0 \mapsto \omega^2 - \omega_k^2 = 0, \ \omega_k = |\vec{k}|$$
(5.13)

Its general free field solution is then written in term of Fourier expansion, with constrain from its dispersion, as

$$A^{\mu}(x) = \int \frac{d^3k}{(2\pi)^3} \int \frac{d\omega}{2\pi} \sum_{\lambda} \left[\epsilon^{\mu}(k,\lambda)a(k,\lambda)e^{-ik\cdot x} + \epsilon^{*\mu}(k,\lambda)a^*(x)e^{ik\cdot x} \right] (2\pi)\delta(\omega^2 - \omega_k^2)\theta(\omega)$$
(5.14)

Using identity

$$\delta(f(x)) = \sum_{i} \frac{\delta(x - a_i)}{|f'(a_i)|}, \text{ where } f(a_i) = 0$$
$$\mapsto \delta(\omega^2 - \omega_k^2) = \frac{1}{2\omega_k} [\delta(\omega - \omega_k) + \delta(\omega + \omega_k)]$$

~ /

Note that $\epsilon^{\mu}(k,\lambda)$ is a generic polarization tensor, satisfy orthogonality condition

$$\epsilon^{*\mu}(k,\lambda)\epsilon^{\nu}(k,\lambda') = g^{\mu\nu}\delta_{\lambda\lambda'} \tag{5.15}$$

5.1.4 Maxwell field Hamiltonian

The conjugate momentum field is derived in the form

$$\pi^{\mu}(x) = \frac{\partial \mathcal{L}}{\partial \partial_0 A_{\mu}} = -F^{0\mu}, \text{ since } F^{00} = 0 \mapsto \pi^0 = 0$$
 (5.16)

This means that $A^0(x)$ is not a dynamical field, so that we will set $A^0 = 0$ for convenient. After applying Legendre transformation of the Lagrangian, we will get the vector field Hamiltonian in the form

$$\mathcal{H} = \pi^{i} \partial_{0} A_{i} - \mathcal{L} \equiv -F^{0i} F_{0i} + \frac{1}{2} F^{0i} F_{0i} + \frac{1}{2} F^{ij} F_{ij}$$
$$= \frac{1}{2} F^{0i} F^{0i} + \frac{1}{2} F^{ij} F^{ij} = \frac{1}{2} (E^{i} E^{i} + B^{k} B^{k})$$
(5.17)

$$\mapsto H = \frac{1}{2} \int d^3x \left(\vec{E} \cdot \vec{E} + \vec{B} \cdot \vec{B} \right)$$
(5.18)

5.1.5Maxwell field with Coulomb condition

We can write $A^{\mu}(x) = (0, \vec{A}(x))$, and from free field solution we will have

$$\epsilon^{\mu}(k,\lambda) = (0,\hat{\epsilon}(k,\lambda)), \text{ and } \dot{k} \cdot \hat{\epsilon} = 0$$
 (5.19)

For
$$k^{\mu} = (\omega_k, 0, 0, k) \mapsto \hat{\epsilon}(k, \lambda) = (0, \epsilon^1, \epsilon^2, 0) \to \lambda = 1, 2$$
 (5.20)

That is $\vec{A}(x)$ is a transverse vector field, corresponds to transverse electric field $\vec{E} = -\partial_0 \vec{A}$ and transverse magnetic field $\vec{B}(x) = \nabla \times \vec{A}(x)$.

5.1.6 Fermi's trick and Feynman gauge

From Lagrangian (5.6), its Euler-Lagrange equation without any gauge fixing condition reads

$$(g_{\mu\nu}\partial^2 - \partial_\mu\partial_\nu)A^\nu(x) = 0 \tag{5.21}$$

Note that the differential operator $D_{\mu\nu} = (g_{\mu\nu}\partial^2 - \partial_{\mu}\partial_{\nu})$ does not have its inverse, we can determine from its Fourier transformation as

$$-k^{2}\left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^{2}}\right)a^{\nu}(k) = 0$$
(5.22)

This problem can be cured by using Fermi's trick, by adding to the Lagrangian (5.6) with gauge fixing condition as

$$(5.6 \mapsto \mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\xi}{2} (\partial_{\mu} A^{\mu})^{2}, \ \xi - \text{gauge parameter}$$
(5.23)
$$S[A^{\mu}] = \int d^{4}x \left\{ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\xi}{2} (\partial_{\mu} A^{\mu})^{2} \right\}$$
$$= \int d^{4}x \left\{ -\frac{1}{2} \partial_{\mu} A_{\nu} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) - \frac{\xi}{2} (\partial_{\mu} A^{\mu})^{2} \right\}$$
$$= \frac{1}{2} \int d^{4}x \left\{ A_{\mu} (g^{\mu\nu} \partial^{2} - (1 - \xi) \partial^{\mu} \partial^{\nu}) A_{\nu} \right\}$$
(5.24)

$$\mapsto \mathcal{L} = \frac{1}{2} A^{\mu} (g_{\mu\nu} \partial^2 - (1 - \xi) \partial_{\mu} \partial_{\nu}) A_{\nu}$$
 (5.25)

$$EOM \mapsto (g_{\mu\nu}\partial^2 - (1-\xi)\partial_{\mu}\partial_{\nu})A_{\nu} = 0$$
 (5.26)

Plane wave solution
$$\mapsto -k^2 \underbrace{\left(g_{\mu\nu} - (1-\xi)\frac{k_{\mu}k_{\nu}}{k^2}\right)}_{=D_{\mu\nu}(k)} a^{\mu}(k) = 0$$
 (5.27)

$$\mapsto D_{\mu\nu}^{-1}(k) = \left(g^{\mu\nu} - \left(1 - \frac{1}{\xi}\right)\frac{k^{\mu}k^{\nu}}{k^2}\right)$$
(5.28)

Feynman gauge condition is $\xi = 1$.

5.1.7 Energy-momentum tensor

From the Lagrangian (5.5), we can derive its energy-momentum tensor in the form

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial_{\mu}A_{\rho}}\partial^{\nu}A^{\rho} - g^{\mu\nu}\mathcal{L} = -F^{\mu\rho}\partial^{\nu}A_{\rho} + \frac{g^{\mu\nu}}{4}F^{\rho\sigma}F_{\rho\sigma} \quad (5.29)$$

$$\mapsto T^{00} = -F^{0i}F_{0i} + \frac{1}{2}F^{0i}F_{0i} + \frac{1}{2}F^{ij}F_{ij} = \frac{1}{2}(E^{i}E^{i} + B^{k}B^{k}) \equiv \mathcal{H}$$
(5.30)
$$T^{0i} = -F^{0j}\partial^{j}A_{k} \equiv \frac{1}{2}E^{j}(\partial_{i}A^{j} - \partial_{j}A^{i}) = \frac{1}{2}E^{j}\epsilon^{ijk}B^{k}$$

$$\mapsto \mathcal{P}^{i} = \frac{1}{2} \epsilon^{ijk} E^{j} B^{k}, \ \vec{P} = \frac{1}{2} \int d^{3} \vec{E} \times \vec{B} \quad (5.31)$$

It is the Poynting vector.

5.1.8 Spin angular momentum tensor

From Lorentz transformation of a vector field is

$$x^{\mu} \xrightarrow{LT} x'^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}, \ A^{\mu} \xrightarrow{LT} A'^{\mu}(x') = \Lambda^{\mu}{}_{\nu}A^{\nu}(x)$$
(5.32)

$$A^{\prime\mu}(x) = \Lambda^{\mu}_{\nu} A^{\nu}(\Lambda^{-1}x) \mapsto \delta A^{\mu}(x) = \frac{1}{2} \omega^{\alpha\beta} \Lambda^{\mu\nu} M_{\alpha\beta} A_{\nu}(x)$$
$$\simeq \frac{1}{2} \omega^{\alpha\beta} \underbrace{g^{\mu\nu} M_{\alpha\beta}}_{=\Sigma^{\mu\nu}_{\alpha\beta}} A_{\nu} \tag{5.33}$$

The spin tensor of a vector field is

$$S^{\mu}{}_{\alpha\beta} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} A^{\rho}} g^{\rho\sigma} M_{\alpha\beta} A_{\sigma} \mapsto S^{0}_{\alpha\beta} = -\frac{\partial \mathcal{L}}{\partial \partial_{0} A^{i}} \delta^{ij} M_{\alpha\beta} A_{j}$$
(5.34)

$$\mapsto S_{ij}^0 = L_{ij} = (\vec{E} \cdot \vec{A}) M_{ij} \tag{5.35}$$

The next step of this analysis must be done on quantum level.

5.2 Electromagnetic duality

Let us determine the *dual field strength tensor*, which is defined in the form

$$\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$$
(5.36)

$$\mapsto \tilde{F}^{0i} = \frac{1}{2} \epsilon^{0ijk} F_{jk}; \ i, j, k = 1, 2, 3$$

$$\tilde{F}^{01} = -B^1, \ \tilde{F}^{02} = -B^2, \ \tilde{F}^{03} = -B^3 \mapsto \vec{E} \xrightarrow{DT} \vec{B}$$
(5.37)

$$\mapsto \tilde{F}^{ij} = \frac{1}{2} \epsilon^{ij\mu\nu} F_{\mu\nu}, \ \mu, \nu \neq i, j = 1, 2, 3$$

$$\tilde{F}^{12} = \frac{1}{2} \epsilon^{1230} F_{30} + \frac{1}{2} \epsilon^{1203} F_{03} = F_{03} = -F^{03} = E^3$$

Similarly $\tilde{F}^{13} = -E^2, \ \tilde{F}^{23} = E^1 \mapsto \vec{B} \xrightarrow{DT} - \vec{E}$ (5.38)

$$\mapsto \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} = -F_{\mu\nu} F^{\mu\nu}$$
(5.39)

In general, the dual symmetry of electromagnetic field is defined in the form

$$\vec{E} \xrightarrow{DT} \vec{E} \cos \theta + \vec{B} \sin \theta \tag{5.40}$$

$$\vec{B} \xrightarrow{DT} \vec{B} \cos \theta - \vec{E} \sin \theta$$
 (5.41)

where θ is arbitrary scalar parameter. And the dual transformation of the source charge ρ and current \vec{j} are defined as

$$\rho_e \xrightarrow{DT} \rho_e \cos \theta + \rho_m \sin \theta \tag{5.42}$$

$$\rho_m \xrightarrow{DT} \rho_m \cos \theta - \rho_e \sin \theta \tag{5.43}$$

$$\vec{j}_e \xrightarrow{DT} \vec{j}_e \cos \theta + \vec{j}_m \sin \theta$$
(5.44)

$$\vec{j}_m \xrightarrow{DT} \vec{j}_m \cos \theta - \vec{j}_e \sin \theta \tag{5.45}$$

Note form (5.5), when apply with $\epsilon^{\mu\nu\rho\sigma}$, we observe that

$$\epsilon^{\mu\nu\rho\sigma}\partial_{\nu}F_{\rho\sigma} + \epsilon^{\sigma\mu\nu\rho}\partial_{\sigma}F_{\nu\rho} + \epsilon^{\rho\sigma\mu\nu}\partial_{\rho}F_{\sigma\nu} = 0$$

$$\mapsto \partial_{\mu}\frac{1}{2}\epsilon^{\mu\rho\sigma\nu}F_{\sigma\nu} \equiv \partial_{\mu}\tilde{F}^{\mu\rho} = 0$$
(5.46)

This shows that the dual field strength tensor also satisfy the Maxwell equation With a source term $\tilde{j}^{\mu} = (\rho_m, \vec{j}_m)$, where ρ_m will be magnetic charge (monopole) density and Maxwell equation becomes

$$\partial_{\mu}\tilde{F}^{\mu\nu} = -\tilde{j}^{\mu}$$

This means that the magnetic charge should exist in the nature, according to this duality symmetry.

The dual symmetric Lagrangian can be written in the form

$$\mathcal{L} = -\frac{1}{4} \left(F_{\mu\nu} F^{\mu\nu} + \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$
(5.47)

And assume the existent of dual vector field

$$\tilde{F}^{\mu\nu} = \partial^{\mu}\tilde{A}^{\nu} - \partial^{\nu}\tilde{A}^{\mu} \tag{5.48}$$

Then we can introduce the complex vector field in the form

$$C^{\mu} = A^{\mu} + i\tilde{A}^{\mu} \mapsto D^{\mu\nu} = \partial^{\mu}C^{\nu} - \partial^{\nu}C^{\mu}$$
(5.49)

$$\mapsto \tilde{D}^{\mu\nu} = -iD^{\mu\nu} \text{ and } \mathcal{L} = -\frac{1}{8}D_{\mu\nu}D^{*\mu\nu}$$
(5.50)

$$EOM \to \partial_{\mu} D^{\mu\nu} = 0 \tag{5.51}$$

And the dual transformation can be written in term of simple U(1) gauge transformation as

$$C^{\mu} \xrightarrow{DT} e^{-i\theta} C^{\mu} \mapsto \begin{cases} A^{\mu} \xrightarrow{DT} A^{\mu} \cos \theta + \tilde{A}^{\mu} \sin \theta \\ \tilde{A}^{\mu} \xrightarrow{DT} \tilde{A}^{\mu} \cos \theta - A^{\mu} \sin \theta \end{cases}$$
(5.52)

$$\mapsto D^{\mu\nu} \xrightarrow{DT} e^{-i\theta} D^{\mu\nu} \tag{5.53}$$

And the Lagrangian (5.44) is invariant under duality transformation.

5.3 Born-Infeld Lagrangian

From Maxwell Lagrangian (5.6), it grows to infinity when $E \to \infty$ close to the point charge. To eliminate this infinity Born and Infeld put the upper value of the electric field at b and proposed the new vector field Lagrangian of the form

$$\mathcal{L} = b^2 \left(1 - \sqrt{1 - \frac{F_{\mu\nu}F^{\mu\nu}}{2b^2}} \right)$$
$$= b^2 \left(1 - \sqrt{1 - \frac{\vec{E}^2 - \vec{B}^2}{b^2}} \right) \xrightarrow[|\vec{E}|/b\ll 1]{} \frac{1}{2} (\vec{E}^2 - \vec{B}^2)$$
(5.54)

in which we recover Maxwell Lagrangian in the limit of weak field $|\vec{E}|/b \ll 1$. It is similar to the case we have put the upper value of velocity v within special relativity at the light speed c and replace the free particle Lagrangian from

$$L = mc^2 \left(1 - \sqrt{1 - \frac{v^2}{c^2}}\right) \xrightarrow[v/c \to 0]{} \frac{1}{2}mv^2$$

A more general form of Born-Infeld Lagrangian is written in the form

$$\mathcal{L} = b^{2} \left(1 - \sqrt{1 - \det\left(g^{\mu\nu} + \frac{1}{b}F^{\mu\nu}\right)} \right)$$
$$= b^{2} \left(1 - \sqrt{1 + \frac{1}{2b^{2}}F_{\mu\nu}F^{\mu\nu} - \frac{1}{16b^{4}}F_{\mu\nu}\tilde{F}^{\mu\nu}} \right)$$
(5.55)