5 Classical Aspects of Vector Fields

5.1 Maxwell vector field
5.1.1 Maxwell field Lagrangian

Let us determine electromagnetic field as classical massless vector field, known
as Maxwell field. Its dynamics is determined from Lorentz vector field A*(x),
known as 4-potential, and its Lagrangian is written in term of field strength
tensor

FH = gHAY — 9V AF, PP = —FVH sy FOO = P = 0,7 =1,2,3 (5.1)
FY% = 9yA* + 9;,A° = —F", (5.2)
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5.1.2 Gauge symmetry
Let us determine a transformation of vector field
AP — AP = AP L 9Py s FPY o FIRY = R (5.9)

for arbitrary scalar function y(z). This symmetry had got the name of gauge
symmetry by Herman Weyl. To get the physical vector field, we have to break
this symmetry by applying with gauge fixing condition, in which the commonly
used conditions are

e Lorentz condition: 9,A"(x) =0,
e Coulomb condition: V- A4 = 0.
With Lorentz gauge condition, its Euler-Lagrange equation becomes
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5.1.3 Free field solution

Its trial free field solution is
AR(z) ~ e (k, Na(k, N e % s —k2e*(k, N)a(k,\) = 0 (5.12)
k= -k k=0 w’—w} =0, w=|k (5.13)

Its general free field solution is then written in term of Fourier expansion, with
constrain from its dispersion, as
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Note that e*(k, A) is a generic polarization tensor, satisfy orthogonality condi-
tion

et (k, N)e” (k,N') = g o (5.15)

5.1.4 Maxwell field Hamiltonian

The conjugate momentum field is derived in the form
oL
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This means that A°(z) is not a dynamical field, so that we will set A° = 0 for

convenient. After applying Legendre transformation of the Lagrangian, we will
get the vector field Hamiltonian in the form

7 (x) = —F% since F* =0 7" =0 (5.16)
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HHZ%/d3x(E~E+§-§) (5.18)

5.1.5 Maxwell field with Coulomb condition
We can write A*(z) = (0, A(z)), and from free field solution we will have
e (k,\) = (0,é(k, ), and k-é=0 (5.19)
For k¥ = (wy,0,0,k) — é(k,A) = (0,¢',€%,0) = A =1,2 (5.20)

That is ff(x) is a transverse vector field, corresponds to transverse electric field
E = —9pA and transverse magnetic field B(xz) = V x A(x).



5.1.6 Fermi’s trick and Feynman gauge

From Lagrangian (5.6), its Euler-Lagrange equation without any gauge fixing
condition reads

(90 — 0,0,)A¥ (z) = 0 (5.21)

Note that the differential operator D,, = (gm,(’)2 — 0,0,) does not have its
inverse, we can determine from its Fourier transformation as
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This problem can be cured by using Fermi’s trick, by adding to the Lagrangian
(5.6) with gauge fixing condition as

(5.6 = L= _iFleW — g(aﬂA“)Q, & — gauge parameter (5.23)
S[AM] = /d% {—iFWF’“’ - g(aMAW}

_ / de {—;8MA,,(6“A” _orAr) - g(aﬂAﬂf}
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L= A (gl — (1-00,0,)4,  (5.25)
EOM + (g,,0* — (1 —€)9,0,)A, =0 (5.26)
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Feynman gauge condition is & = 1.

5.1.7 Energy-momentum tensor

From the Lagrangian (5.5), we can derive its energy-momentum tensor in the
form
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It is the Poynting vector.

5.1.8 Spin angular momentum tensor
From Lorentz transformation of a vector field is
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The spin tensor of a vector field is
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The next step of this analysis must be done on quantum level.

5.2 Electromagnetic duality
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Let us determine the dual field strength tensor, which is defined in the form
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In general, the dual symmetry of electromagnetic field is defined in the form

E 2L, Ecos + Bsinf

B 2L Beosh — Esind



where 6 is arbitrary scalar parameter. And the dual transformation of the source
charge p and current j are defined as

Pe L7, Pe COS O + py, sin 6 (5.42)
Pm EEKN P COS O — pe sin @ (5.43)
e LT, Je O8O + Jm sin 0 (5.44)
Jm REEIN Jim cOSO — josin 6 (5.45)
Note form (5.5), when apply with e#*?? we observe that
tPOO, Fpy + €M PO F,, + €P7H 0, Fy, =0
- 6H%e“p"”Fm, =0,F" =0 (5.46)

This shows that the dual field strength tensor also satisfy the Maxwell equation
With a source term j# = (pm, jm ), where p,,, will be magnetic charge (monopole)
density and Maxwell equation becomes

0, =
This means that the magnetic charge should exist in the nature, according to

this duality symmetry.
The dual symmetric Lagrangian can be written in the form
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And assume the existent of dual vector field
Frv — grAY — g¥ A* (5.48)

Then we can introduce the complex vector field in the form

CH = AF 4 iAF s DM = 9HCY — 9 CH (5.49)
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— DM = —{D* and L = _gDuyD*W (5.50)

EOM — 8,D" =0 (5.51)

And the dual transformation can be written in term of simple U(1) gauge trans-
formation as
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And the Lagrangian (5.44) is invariant under duality transformation.



5.3 Born-Infeld Lagrangian

From Maxwell Lagrangian (5.6), it grows to infinity when F — oo close to the
point charge. To eliminate this infinity Born and Infeld put the upper value of
the electric field at b and proposed the new vector field Lagrangian of the form

F,, Fr
=b*|1—4/1 -
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E?2— B? 1 4 =
=b*[1—4/1- —(E? - B?) (5.54)
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in which we recover Maxwell Lagrangian in the limit of weak field |E |/b < 1.
It is similar to the case we have put the upper value of velocity v within special
relativity at the light speed ¢ and replace the free particle Lagrangian from
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A more general form of Born-Infeld Lagrangian is written in the form
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